IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5462-d272925.html
   My bibliography  Save this article

Flexible Mobile Hub for E-Bike Sharing and Cruise Tourism: A Case Study

Author

Listed:
  • Andrea Bardi

    (ITL—Fondazione Istituto sui Trasporti e la Logistica, Via dei Mille, 21-40121 Bologna, Italy)

  • Luca Mantecchini

    (DICAM—School of Engineering and Architecture, University of Bologna, Viale del Risorgimento, 2-40136 Bologna, Italy)

  • Denis Grasso

    (ITL—Fondazione Istituto sui Trasporti e la Logistica, Via dei Mille, 21-40121 Bologna, Italy)

  • Filippo Paganelli

    (DICAM—School of Engineering and Architecture, University of Bologna, Viale del Risorgimento, 2-40136 Bologna, Italy)

  • Caterina Malandri

    (DICAM—School of Engineering and Architecture, University of Bologna, Viale del Risorgimento, 2-40136 Bologna, Italy)

Abstract

Bike sharing is no longer a novelty in transportation and has now become a mobility solution in its own right. This study investigated the potential scope of application of e-bike sharing solutions for a niche sector such as cruise tourism, the importance of which is growing, with the aim of improving sustainability and reducing pollution levels in cruise ports. A revealed preference survey was administered to cruise tourists, who chose a pilot e-bike service once they had disembarked from the ship to visit the nearby city center, to investigate the main variables affecting satisfaction with the service under investigation. An ordered probit model was specified and calibrated to identify the relationship among the variables influencing e-bike sharing usage by cruise tourists and their satisfaction. Subsequently, the marginal effect of each significant factor was evaluated to quantify its actual impact on the related e-bike sharing satisfaction level. The results obtained are consistent with the literature, but interesting interpretations are provided in terms of the relative importance of significant variables.

Suggested Citation

  • Andrea Bardi & Luca Mantecchini & Denis Grasso & Filippo Paganelli & Caterina Malandri, 2019. "Flexible Mobile Hub for E-Bike Sharing and Cruise Tourism: A Case Study," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5462-:d:272925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    2. Rosa-Jiménez, Carlos & Perea-Medina, Beatriz & Andrade, María J. & Nebot, Nuria, 2018. "An examination of the territorial imbalance of the cruising activity in the main Mediterranean port destinations: Effects on sustainable transport," Journal of Transport Geography, Elsevier, vol. 68(C), pages 94-101.
    3. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    4. Zhao, Jinbao & Deng, Wei & Song, Yan, 2014. "Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China," Transport Policy, Elsevier, vol. 35(C), pages 253-264.
    5. Han, Heesup & Meng, Bo & Kim, Wansoo, 2017. "Bike-traveling as a growing phenomenon: Role of attributes, value, satisfaction, desire, and gender in developing loyalty," Tourism Management, Elsevier, vol. 59(C), pages 91-103.
    6. Caggiani, Leonardo & Camporeale, Rosalia & Marinelli, Mario & Ottomanelli, Michele, 2019. "User satisfaction based model for resource allocation in bike-sharing systems," Transport Policy, Elsevier, vol. 80(C), pages 117-126.
    7. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    8. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    9. Böhler, Susanne & Grischkat, Sylvie & Haustein, Sonja & Hunecke, Marcel, 2006. "Encouraging environmentally sustainable holiday travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(8), pages 652-670, October.
    10. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    11. Wang, Chih-Hao & Akar, Gulsah & Guldmann, Jean-Michel, 2015. "Do your neighbors affect your bicycling choice? A spatial probit model for bicycling to The Ohio State University," Journal of Transport Geography, Elsevier, vol. 42(C), pages 122-130.
    12. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    13. Audikana, Ander & Ravalet, Emmanuel & Baranger, Virginie & Kaufmann, Vincent, 2017. "Implementing bikesharing systems in small cities: Evidence from the Swiss experience," Transport Policy, Elsevier, vol. 55(C), pages 18-28.
    14. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    15. Efthimios BAKOGIANNIS & Avgi VASSI & Georgia CHRISTODOULOPOULOU & Maria SITI, 2018. "Bike Sharing Systems As A Tool To Increase Sustainable Coastal And Maritime Tourism. The Case Of Piraeus," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(3), pages 57-70, December.
    16. De Vos, Jonas, 2018. "Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 261-274.
    17. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    18. Kaplan, Sigal & Manca, Francesco & Nielsen, Thomas Alexander Sick & Prato, Carlo Giacomo, 2015. "Intentions to use bike-sharing for holiday cycling: An application of the Theory of Planned Behavior," Tourism Management, Elsevier, vol. 47(C), pages 34-46.
    19. Médard de Chardon, Cyrille, 2019. "The contradictions of bike-share benefits, purposes and outcomes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 401-419.
    20. Fu, Liwei & Farber, Steven, 2017. "Bicycling frequency: A study of preferences and travel behavior in Salt Lake City, Utah," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 30-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Beltramo & Giovanni Peira & Alessandro Bonadonna, 2021. "Creating a Tourism Destination through Local Heritage: The Stakeholders’ Priorities in the Canavese Area (Northwest Italy)," Land, MDPI, vol. 10(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    2. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    3. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    4. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    5. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    6. Tamás Mátrai & János Tóth, 2020. "Cluster Analysis of Public Bike Sharing Systems for Categorization," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    7. Tomasz Bieliński & Agnieszka Kwapisz & Agnieszka Ważna, 2019. "Bike-Sharing Systems in Poland," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    8. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    9. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    10. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    11. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    12. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    13. Maas, Suzanne & Nikolaou, Paraskevas & Attard, Maria & Dimitriou, Loukas, 2021. "Spatial and temporal analysis of shared bicycle use in Limassol, Cyprus," Journal of Transport Geography, Elsevier, vol. 93(C).
    14. Jara-Díaz, Sergio & Latournerie, André & Tirachini, Alejandro & Quitral, Félix, 2022. "Optimal pricing and design of station-based bike-sharing systems: A microeconomic model," Economics of Transportation, Elsevier, vol. 31(C).
    15. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    16. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    17. Mengwei Chen & Dianhai Wang & Yilin Sun & E. Owen D. Waygood & Wentao Yang, 2020. "A comparison of users’ characteristics between station-based bikesharing system and free-floating bikesharing system: case study in Hangzhou, China," Transportation, Springer, vol. 47(2), pages 689-704, April.
    18. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    19. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    20. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5462-:d:272925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.