IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v80y2019icp117-126.html
   My bibliography  Save this article

User satisfaction based model for resource allocation in bike-sharing systems

Author

Listed:
  • Caggiani, Leonardo
  • Camporeale, Rosalia
  • Marinelli, Mario
  • Ottomanelli, Michele

Abstract

Over the past decade, the number of ongoing bike-sharing programs has remarkably risen. In this framework, operators need appropriate methodologies to support them in optimizing the allocation of their resources to globally enhance the bike-sharing program, even without massive and costly interventions on the existing configuration of the system.

Suggested Citation

  • Caggiani, Leonardo & Camporeale, Rosalia & Marinelli, Mario & Ottomanelli, Michele, 2019. "User satisfaction based model for resource allocation in bike-sharing systems," Transport Policy, Elsevier, vol. 80(C), pages 117-126.
  • Handle: RePEc:eee:trapol:v:80:y:2019:i:c:p:117-126
    DOI: 10.1016/j.tranpol.2018.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17305322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    2. Christine Fricker & Nicolas Gast, 2016. "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 261-291, August.
    3. Mor Kaspi & Tal Raviv & Michal Tzur, 2017. "Bike-sharing systems: User dissatisfaction in the presence of unusable bicycles," IISE Transactions, Taylor & Francis Journals, vol. 49(2), pages 144-158, February.
    4. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    5. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    6. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    7. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    8. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    9. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    10. Samir Hamaci & A-Moumen Darcherif & Karim Labadi & Taha Benarbia, 2012. "Petri Nets Models for Analysis and Control of Public Bicycle-Sharing Systems," Chapters, in: Pawel Pawlewski (ed.), Petri Nets - Manufacturing and Computer Science, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    2. Andrea Bardi & Luca Mantecchini & Denis Grasso & Filippo Paganelli & Caterina Malandri, 2019. "Flexible Mobile Hub for E-Bike Sharing and Cruise Tourism: A Case Study," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    3. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    4. Caggiani, Leonardo & Colovic, Aleksandra & Ottomanelli, Michele, 2020. "An equality-based model for bike-sharing stations location in bicycle-public transport multimodal mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 251-265.
    5. Gonzalo A. Aranda-Corral & Miguel A. Rodríguez & Iñaki Fernández de Viana & María Isabel G. Arenas, 2021. "Genetic Hybrid Optimization of a Real Bike Sharing System," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    6. Zijia Wang & Lei Cheng & Yongxing Li & Zhiqiang Li, 2020. "Spatiotemporal Characteristics of Bike-Sharing Usage around Rail Transit Stations: Evidence from Beijing, China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    7. Foschi, Rachele, 2023. "A Point Processes approach to bicycle sharing systems’ design and management," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    2. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    3. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    4. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    5. Yang, Lin & Zhang, Fayong & Kwan, Mei-Po & Wang, Ke & Zuo, Zejun & Xia, Shaotian & Zhang, Zhiyong & Zhao, Xinpei, 2020. "Space-time demand cube for spatial-temporal coverage optimization model of shared bicycle system: A study using big bike GPS data," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Carlos M. Vallez & Mario Castro & David Contreras, 2021. "Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    7. Rodrigo Mora & Pablo Moran, 2020. "Public Bike Sharing Programs Under the Prism of Urban Planning Officials: The Case of Santiago de Chile," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    8. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    9. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    10. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    11. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    12. Levy, Nadav & Golani, Chen & Ben-Elia, Eran, 2019. "An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 325-334.
    13. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    14. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    15. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    16. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    17. Fukushige, Tatsuya & Fitch, Dillon T. & Handy, Susan, 2022. "Can an Incentive-Based approach to rebalancing a Dock-less Bike-share system Work? Evidence from Sacramento, California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 181-194.
    18. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    19. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    20. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:80:y:2019:i:c:p:117-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.