IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v80y2019icp117-126.html
   My bibliography  Save this article

User satisfaction based model for resource allocation in bike-sharing systems

Author

Listed:
  • Caggiani, Leonardo
  • Camporeale, Rosalia
  • Marinelli, Mario
  • Ottomanelli, Michele

Abstract

Over the past decade, the number of ongoing bike-sharing programs has remarkably risen. In this framework, operators need appropriate methodologies to support them in optimizing the allocation of their resources to globally enhance the bike-sharing program, even without massive and costly interventions on the existing configuration of the system.

Suggested Citation

  • Caggiani, Leonardo & Camporeale, Rosalia & Marinelli, Mario & Ottomanelli, Michele, 2019. "User satisfaction based model for resource allocation in bike-sharing systems," Transport Policy, Elsevier, vol. 80(C), pages 117-126.
  • Handle: RePEc:eee:trapol:v:80:y:2019:i:c:p:117-126
    DOI: 10.1016/j.tranpol.2018.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17305322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    2. Christine Fricker & Nicolas Gast, 2016. "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 261-291, August.
    3. Mor Kaspi & Tal Raviv & Michal Tzur, 2017. "Bike-sharing systems: User dissatisfaction in the presence of unusable bicycles," IISE Transactions, Taylor & Francis Journals, vol. 49(2), pages 144-158, February.
    4. repec:cdl:itsdav:qt79v822k5 is not listed on IDEAS
    5. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    6. repec:cdl:itsrrp:qt6qg8q6ft is not listed on IDEAS
    7. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    8. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    9. Alvarez-Valdes, Ramon & Belenguer, Jose M. & Benavent, Enrique & Bermudez, Jose D. & Muñoz, Facundo & Vercher, Enriqueta & Verdejo, Francisco, 2016. "Optimizing the level of service quality of a bike-sharing system," Omega, Elsevier, vol. 62(C), pages 163-175.
    10. Samir Hamaci & A-Moumen Darcherif & Karim Labadi & Taha Benarbia, 2012. "Petri Nets Models for Analysis and Control of Public Bicycle-Sharing Systems," Chapters, in: Pawel Pawlewski (ed.), Petri Nets - Manufacturing and Computer Science, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    2. Andrea Bardi & Luca Mantecchini & Denis Grasso & Filippo Paganelli & Caterina Malandri, 2019. "Flexible Mobile Hub for E-Bike Sharing and Cruise Tourism: A Case Study," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    3. Caggiani, Leonardo & Colovic, Aleksandra & Ottomanelli, Michele, 2020. "An equality-based model for bike-sharing stations location in bicycle-public transport multimodal mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 251-265.
    4. Gonzalo A. Aranda-Corral & Miguel A. Rodríguez & Iñaki Fernández de Viana & María Isabel G. Arenas, 2021. "Genetic Hybrid Optimization of a Real Bike Sharing System," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    5. Zijia Wang & Lei Cheng & Yongxing Li & Zhiqiang Li, 2020. "Spatiotemporal Characteristics of Bike-Sharing Usage around Rail Transit Stations: Evidence from Beijing, China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    6. Foschi, Rachele, 2023. "A Point Processes approach to bicycle sharing systems’ design and management," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    7. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    8. Garyfallos Arabatzis & Chrysovalantis Malesios & Georgios Kolkos & Apostolos Kantartzis & Panagiotis Lemonakis, 2024. "Quality of Life in the City of Trikala (Greece): Attitudes and Opinions of Residents on Green Spaces and Cycling Paths," Land, MDPI, vol. 13(11), pages 1-18, November.
    9. Hui Bi & Zhirui Ye & He Zhu, 2024. "Mining bike sharing trip record data: a closer examination of the operating performance at station level," Transportation, Springer, vol. 51(3), pages 1015-1041, June.
    10. Teusch, Julian & Saavedra, Bruno Neumann & Scherr, Yannick Oskar & Müller, Jörg P., 2025. "Strategic planning of geo-fenced micro-mobility facilities using reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xiaozhou & Wang, Qingyi, 2024. "A stochastic programming model for free-floating shared bike redistribution considering bike gathering," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    2. Zhou, Yaoming & Lin, Zeyu & Guan, Rui & Sheu, Jiuh-Biing, 2023. "Dynamic battery swapping and rebalancing strategies for e-bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    3. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    4. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    5. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    6. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    7. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    8. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    9. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    10. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    11. Song, Jiatong & Li, Baicheng & Szeto, W.Y. & Zhan, Xingbin, 2024. "A station location design problem in a bike-sharing system with both conventional and electric shared bikes considering bike users’ roaming delay costs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    12. Yang, Lin & Zhang, Fayong & Kwan, Mei-Po & Wang, Ke & Zuo, Zejun & Xia, Shaotian & Zhang, Zhiyong & Zhao, Xinpei, 2020. "Space-time demand cube for spatial-temporal coverage optimization model of shared bicycle system: A study using big bike GPS data," Journal of Transport Geography, Elsevier, vol. 88(C).
    13. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    14. Quan-Lin Li & Rui-Na Fan, 2022. "A mean-field matrix-analytic method for bike sharing systems under Markovian environment," Annals of Operations Research, Springer, vol. 309(2), pages 517-551, February.
    15. Stanislav Kubaľák & Alica Kalašová & Ambróz Hájnik, 2021. "The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    16. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    17. Jessica Berg & Malin Henriksson & Jonas Ihlström, 2019. "Comfort First! Vehicle-Sharing Systems in Urban Residential Areas: The Importance for Everyday Mobility and Reduction of Car Use among Pilot Users," Sustainability, MDPI, vol. 11(9), pages 1-16, April.
    18. Frank, Laura & Dirks, Nicolas & Walther, Grit, 2021. "Improving rural accessibility by locating multimodal mobility hubs," Journal of Transport Geography, Elsevier, vol. 94(C).
    19. Wang, Jenhung & Tsai, Ching-Hui & Lin, Pei-Chun, 2016. "Applying spatial-temporal analysis and retail location theory to public bikes site selection in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 45-61.
    20. repec:plo:pone00:0212478 is not listed on IDEAS
    21. Bruno A. Neumann-Saavedra & Rossana Cavagnini, 2025. "Column-generation-based heuristics for integrating static rebalancing and faulty bike collection in bike-sharing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(2), pages 375-409, June.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:80:y:2019:i:c:p:117-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.