IDEAS home Printed from https://ideas.repec.org/a/eee/ecotra/v31y2022ics2212012222000247.html
   My bibliography  Save this article

Optimal pricing and design of station-based bike-sharing systems: A microeconomic model

Author

Listed:
  • Jara-Díaz, Sergio
  • Latournerie, André
  • Tirachini, Alejandro
  • Quitral, Félix

Abstract

Carefully collected data of nine station-based Bike Sharing Systems (BSS) observed during several years, feed the theoretical formulation of three (aggregated) strategic models representing BSS operation from which the optimal design and pricing is derived. The models include both the operator's costs (investment and operation) and users' costs (time to walk to-from a station, waiting at a station, and time while cycling). The design variables are station spacing, number and capacity of stations, number of bicycles and bike repositioning. Once optimized, the design variables lead to cost functions and optimal pricing. In the first model, a permanent equilibrium without waiting times is assumed. In the second model, waiting at stations (due to a lack of bicycles or docking sites) is introduced in an aggregate form, which results in an increase in the optimal number of bikes and docking sites, making the optimal money price per trip to increase. The third and final model introduces repositioning of bicycles in order to diminish waiting time, making the optimal price grow even further. We obtain an optimal subsidy per trip that grows with the area covered by the BSS, which has implications for its actual implementation in large cities and their spatial and social equity. The optimal pricing scheme is caused by economies of scale due to the reduction in users' access and egress times as the density of stations increases (positive externality) in addition to a fixed operator cost.

Suggested Citation

  • Jara-Díaz, Sergio & Latournerie, André & Tirachini, Alejandro & Quitral, Félix, 2022. "Optimal pricing and design of station-based bike-sharing systems: A microeconomic model," Economics of Transportation, Elsevier, vol. 31(C).
  • Handle: RePEc:eee:ecotra:v:31:y:2022:i:c:s2212012222000247
    DOI: 10.1016/j.ecotra.2022.100273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212012222000247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecotra.2022.100273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    2. Baumol, William J, 1982. "Contestable Markets: An Uprising in the Theory of Industry Structure," American Economic Review, American Economic Association, vol. 72(1), pages 1-15, March.
    3. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    4. Tiznado-Aitken, Ignacio & Fuenzalida-Izquierdo, Jorge & Sagaris, Lake & Mora, Rodrigo, 2021. "Using the five Ws to explore bikeshare equity in Santiago, Chile," Journal of Transport Geography, Elsevier, vol. 97(C).
    5. Gavin Fynn Lohry & Alice Yiu, 2015. "Bikeshare in China as a public service: Comparing government‐run and public‐private partnership operation models," Natural Resources Forum, Blackwell Publishing, vol. 39(1), pages 41-52, February.
    6. Zhang, Jie & Meng, Meng & Wong, Yiik Diew & Ieromonachou, Petros & Wang, David Z.W., 2021. "A data-driven dynamic repositioning model in bicycle-sharing systems," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. repec:cdl:itsdav:qt79v822k5 is not listed on IDEAS
    8. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    9. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    10. repec:cdl:itsrrp:qt6qg8q6ft is not listed on IDEAS
    11. Jovicic, Goran & Hansen, Christian Overgaard, 2003. "A passenger travel demand model for Copenhagen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 333-349, May.
    12. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    13. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    14. Albiński, Szymon & Fontaine, Pirmin & Minner, Stefan, 2018. "Performance analysis of a hybrid bike sharing system: A service-level-based approach under censored demand observations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 59-69.
    15. Rodrigo Mora & Pablo Moran, 2020. "Public Bike Sharing Programs Under the Prism of Urban Planning Officials: The Case of Santiago de Chile," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    16. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    17. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    18. Börjesson, Maria & Fung, Chau Man & Proost, Stef, 2017. "Optimal prices and frequencies for buses in Stockholm," Economics of Transportation, Elsevier, vol. 9(C), pages 20-36.
    19. Gavin Fynn Lohry & Alice Yiu, 2015. "Bikeshare in China as a public service: Comparing government‐run and public‐private partnership operation models," Natural Resources Forum, Blackwell Publishing, vol. 0(1), pages 41-52, February.
    20. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    21. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    22. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    23. Rahul Nair & Elise Miller-Hooks, 2011. "Fleet Management for Vehicle Sharing Operations," Transportation Science, INFORMS, vol. 45(4), pages 524-540, November.
    24. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    25. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    2. Jara-Diaz, Sergio R. & Muñoz-Paulsen, Esteban, 2024. "Cable cars: From optimal design to optimal pricing," Research in Transportation Economics, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    3. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).
    4. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    5. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    6. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    7. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    8. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    9. Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    10. Sunio, Varsolo & Laperal, Miguel & Mateo-Babiano, Iderlina, 2020. "Social enterprise as catalyst of transformation in the micro-mobility sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 145-157.
    11. Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    12. Andreas Piter & Philipp Otto & Hamza Alkhatib, 2022. "The Helsinki bike‐sharing system—Insights gained from a spatiotemporal functional model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1294-1318, July.
    13. Giagnorio, Mirko & Börjesson, Maria & D'Alfonso, Tiziana, 2024. "Introducing electric buses in urban areas: Effects on welfare, pricing, frequency, and public subsidies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    14. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    15. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    16. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    17. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    18. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    19. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    20. Vigren, Andreas & Pyddoke, Roger, 2020. "The impact on bus ridership of passenger incentive contracts in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 144-159.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecotra:v:31:y:2022:i:c:s2212012222000247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecotra .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.