IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.04945.html
   My bibliography  Save this paper

Estimating Parameters of Structural Models Using Neural Networks

Author

Listed:
  • Yanhao

    (Max)

  • Wei
  • Zhenling Jiang

Abstract

We study an alternative use of machine learning. We train neural nets to provide the parameter estimate of a given (structural) econometric model, for example, discrete choice or consumer search. Training examples consist of datasets generated by the econometric model under a range of parameter values. The neural net takes the moments of a dataset as input and tries to recognize the parameter value underlying that dataset. Besides the point estimate, the neural net can also output statistical accuracy. This neural net estimator (NNE) tends to limited-information Bayesian posterior as the number of training datasets increases. We apply NNE to a consumer search model. It gives more accurate estimates at lighter computational costs than the prevailing approach. NNE is also robust to redundant moment inputs. In general, NNE offers the most benefits in applications where other estimation approaches require very heavy simulation costs. We provide code at: https://nnehome.github.io.

Suggested Citation

  • Yanhao & Wei & Zhenling Jiang, 2025. "Estimating Parameters of Structural Models Using Neural Networks," Papers 2502.04945, arXiv.org.
  • Handle: RePEc:arx:papers:2502.04945
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.04945
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2023. "An Adversarial Approach to Structural Estimation," Econometrica, Econometric Society, vol. 91(6), pages 2041-2063, November.
    2. Youjin Lee & Elizabeth L. Ogburn, 2021. "Network Dependence Can Lead to Spurious Associations and Invalid Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1060-1074, July.
    3. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    4. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    5. Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benmir, Ghassane & Mori, Aditya & Roman, Josselin & Tarsia, Romano, 2025. "Beneath the trees: the influence of natural capital on shadow price dynamics in a macroeconomic model with uncertainty," LSE Research Online Documents on Economics 128516, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amano-Patiño, N. & Baron, T. & Xiao, P., 2020. "Human Capital Accumulation, Equilibrium Wage-Setting and the Life-Cycle Gender Pay Gap," Cambridge Working Papers in Economics 2010, Faculty of Economics, University of Cambridge.
    2. Jonas Radbruch & Amelie Schiprowski, 2025. "Interview Sequences and the Formation of Subjective Assessments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 92(2), pages 1226-1256.
    3. Pashchenko, Svetlana & Porapakkarm, Ponpoje, 2020. "Saving Motives over the Life-Cycle," MPRA Paper 100208, University Library of Munich, Germany.
    4. Greg Kaplan, 2012. "Inequality and the life cycle," Quantitative Economics, Econometric Society, vol. 3(3), pages 471-525, November.
    5. Hjalmar Böhm & Michael Funke & Nikolaus A. Siegfried, 1999. "Discovering the Link between Uncertainty and Investment - Microeconometric Evidence from Germany," Quantitative Macroeconomics Working Papers 19906, Hamburg University, Department of Economics.
    6. Wizan, Maisarah & Sologon, Denisa M. & Marchal, Sarah, 2025. "The Shift from Persistent Inequality to Earnings Instability in Belgium," IZA Discussion Papers 18132, Institute of Labor Economics (IZA).
    7. Mariacristina De Nardi & Eric French & John Bailey Jones, 2016. "Medicaid Insurance in Old Age," American Economic Review, American Economic Association, vol. 106(11), pages 3480-3520, November.
    8. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    9. Alonzo, Davide & Gallipoli, Giovanni, 2023. "The Changing Value of Employment and Its Implications," CEPR Discussion Papers 17943, C.E.P.R. Discussion Papers.
    10. Gobillon, Laurent & Magnac, Thierry & Selod, Harris, 2012. "Do unemployed workers benefit from enterprise zones? The French experience," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 881-892.
    11. Haan, Peter & Prowse, Victoria L., 2010. "The Design of Unemployment Transfers: Evidence from a Dynamic Structural Life-Cycle Model," IZA Discussion Papers 4792, Institute of Labor Economics (IZA).
    12. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2016. "A life-cycle model with ambiguous survival beliefs," Journal of Economic Theory, Elsevier, vol. 162(C), pages 137-180.
    13. Richard Blundell & Monica Costa Dias & Costas Meghir & Jonathan Shaw, 2016. "Female Labor Supply, Human Capital, and Welfare Reform," Econometrica, Econometric Society, vol. 84, pages 1705-1753, September.
    14. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    15. Masakatsu Okubo, 2015. "Earnings Dynamics and Profile Heterogeneity: Estimates from Japanese Panel Data," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 112-146, March.
    16. Combes, Pierre-Philippe & Magnac, Thierry & Robin, Jean-Marc, 2004. "The dynamics of local employment in France," Journal of Urban Economics, Elsevier, vol. 56(2), pages 217-243, September.
    17. Dmytro Hryshko, 2012. "Labor income profiles are not heterogeneous: Evidence from income growth rates," Quantitative Economics, Econometric Society, vol. 3(2), pages 177-209, July.
    18. Jeremy Lise & Costas Meghir & Jean-Marc Robin, 2016. "Matching, Sorting and Wages," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 19, pages 63-87, January.
    19. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    20. David Sturrock, 2023. "Wealth and welfare across generations," IFS Working Papers W23/15, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.04945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.