IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.00585.html
   My bibliography  Save this paper

Prospects of BRICS currency dominance in international trade

Author

Listed:
  • C'elestin Coquid'e
  • Jos'e Lages
  • Dima L. Shepelyansky

Abstract

During his state visit to China in April 2023, Brazilian President Lula proposed the creation of a trade currency supported by the BRICS countries. Using the United Nations Comtrade database, providing the frame of the world trade network associated to 194 UN countries during the decade 2010 - 2020, we study a mathematical model of influence battle of three currencies, namely, the US dollar, the euro, and such a hypothetical BRICS currency. In this model, a country trade preference for one of the three currencies is determined by a multiplicative factor based on trade flows between countries and their relative weights in the global international trade. The three currency seed groups are formed by 9 eurozone countries for the euro, 5 Anglo-Saxon countries for the US dollar and the 5 BRICS countries for the new proposed currency. The countries belonging to these 3 currency seed groups trade only with their own associated currency whereas the other countries choose their preferred trade currency as a function of the trade relations with their commercial partners. The trade currency preferences of countries are determined on the basis of a Monte Carlo modeling of Ising type interactions in magnetic spin systems commonly used to model opinion formation in social networks. We adapt here these models to the world trade network analysis. The results obtained from our mathematical modeling of the structure of the global trade network show that as early as 2012 about 58 percent of countries would have preferred to trade with the BRICS currency, 23 percent with the euro and 19 percent with the US dollar. Our results announce favorable prospects for a dominance of the BRICS currency in international trade, if only trade relations are taken into account, whereas political and other aspects are neglected.

Suggested Citation

  • C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2023. "Prospects of BRICS currency dominance in international trade," Papers 2305.00585, arXiv.org.
  • Handle: RePEc:arx:papers:2305.00585
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.00585
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2010. "The evolution of the world trade web: a weighted-network analysis," Journal of Evolutionary Economics, Springer, vol. 20(4), pages 479-514, August.
    2. Matteo Barigozzi & Giorgio Fagiolo & Diego Garlaschelli, 2009. "Multinetwork of international trade: A commodity-specific analysis," Papers 0908.1879, arXiv.org, revised Jun 2010.
    3. Leonardo Ermann & Dima L. Shepelyansky, 2011. "Google matrix of the world trade network," Papers 1103.5027, arXiv.org.
    4. Kandiah, Vivek & Shepelyansky, Dima L., 2012. "PageRank model of opinion formation on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5779-5793.
    5. Jiankui He & Michael W. Deem, 2010. "Structure and Response in the World Trade Network," Papers 1010.0410, arXiv.org.
    6. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    7. Eom, Young-Ho & Shepelyansky, Dima L., 2015. "Opinion formation driven by PageRank node influence on directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 707-715.
    8. Célestin Coquidé & Leonardo Ermann & José Lages & Dima L. Shepelyansky, 2019. "Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(8), pages 1-14, August.
    9. Abhijit Chakraborty & Yuichi Kichikawa & Takashi Iino & Hiroshi Iyetomi & Hiroyasu Inoue & Yoshi Fujiwara & Hideaki Aoyama, 2018. "Hierarchical communities in the walnut structure of the Japanese production network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-25, August.
    10. Luca De Benedictis & Lucia Tajoli, 2011. "The World Trade Network," The World Economy, Wiley Blackwell, vol. 34(8), pages 1417-1454, August.
    11. C'elestin Coquid'e & Leonardo Ermann & Jos'e Lages & D. L. Shepelyansky, 2019. "Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data," Papers 1903.01820, arXiv.org.
    12. Célestin Coquidé & Leonardo Ermann & José Lages & Dima Shepelyansky, 2019. "Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data," Working Papers hal-02058766, HAL.
    13. M. Serrano & Marián Boguñá & Alessandro Vespignani, 2007. "Patterns of dominant flows in the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 111-124, December.
    14. M. Angeles Serrano & Marian Boguna & Alessandro Vespignani, 2007. "Patterns of dominant flows in the world trade web," Papers 0704.1225, arXiv.org.
    15. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2024. "Opinion formation in the world trade network," Papers 2401.02378, arXiv.org, revised Feb 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2020. "Crisis contagion in the world trade network," Papers 2002.07100, arXiv.org.
    2. Célestin Coquidé & José Lages & Dima Shepelyansky, 2020. "Interdependence of sectors of economic activities for world countries from the reduced Google matrix analysis of WTO data," Post-Print hal-02132487, HAL.
    3. C'elestin Coquid'e & Leonardo Ermann & Jos'e Lages & D. L. Shepelyansky, 2019. "Influence of petroleum and gas trade on EU economies from the reduced Google matrix analysis of UN COMTRADE data," Papers 1903.01820, arXiv.org.
    4. C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2024. "Opinion formation in the world trade network," Papers 2401.02378, arXiv.org, revised Feb 2024.
    5. Leonardo Ermann & Dima L. Shepelyansky, 2015. "Google matrix analysis of the multiproduct world trade network," Papers 1501.03371, arXiv.org.
    6. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    7. Zongning Wu & Hongbo Cai & Ruining Zhao & Ying Fan & Zengru Di & Jiang Zhang, 2020. "A Topological Analysis of Trade Distance: Evidence from the Gravity Model and Complex Flow Networks," Sustainability, MDPI, vol. 12(9), pages 1-17, April.
    8. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Vivek Kandiah & Hubert Escaith & Dima L. Shepelyansky, 2015. "Google matrix of the world network of economic activities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(7), pages 1-20, July.
    10. V. Kandiah & H. Escaith & D. L. Shepelyansky, 2015. "Contagion effects in the world network of economic activities," Papers 1507.03278, arXiv.org.
    11. Célestin Coquidé & José Lages & Leonardo Ermann & Dima Shepelyansky, 2022. "COVID-19 impact on the international trade," Post-Print hal-03536528, HAL.
    12. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    13. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna & Luu, Duc Thi, 2022. "The multilayer architecture of the global input-output network and its properties," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 304-341.
    14. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    15. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    16. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2020. "Community structure in the World Trade Network based on communicability distances," Papers 2001.06356, arXiv.org, revised Jul 2020.
    17. Marcos Duenas & Rossana Mastrandrea & Matteo Barigozzi & Giorgio Fagiolo, 2017. "Spatio-Temporal Patterns of the International Merger and Acquisition Network," LEM Papers Series 2017/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Charlie Joyez, 2017. "Network Structure of French Multinational Firms," Working Papers DT/2017/08, DIAL (Développement, Institutions et Mondialisation).
    19. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.
    20. Hübler, Michael, 2016. "A new trade network theory: What economists can learn from engineers," Economic Modelling, Elsevier, vol. 55(C), pages 115-126.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.00585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.