IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.03303.html
   My bibliography  Save this paper

Social herding in mean field games

Author

Listed:
  • Deepanshu Vasal

Abstract

In this paper, we consider a mean field model of social behavior where there are an infinite number of players, each of whom observes a type privately that represents her preference, and publicly observes a mean field state of types and actions of the players in the society. The types (and equivalently preferences) of the players are dynamically evolving. Each player is fully rational and forward-looking and makes a decision in each round t to buy a product. She receives a higher utility if the product she bought is aligned with her current preference and if there is a higher fraction of people who bought that product (thus a game of strategic complementarity). We show that for certain parameters when the weight of strategic complementarity is high, players eventually herd towards one of the actions with probability 1 which is when each player buys a product irrespective of her preference.

Suggested Citation

  • Deepanshu Vasal, 2023. "Social herding in mean field games," Papers 2303.03303, arXiv.org.
  • Handle: RePEc:arx:papers:2303.03303
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.03303
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    2. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    3. Adlakha, Sachin & Johari, Ramesh & Weintraub, Gabriel Y., 2015. "Equilibria of dynamic games with many players: Existence, approximation, and market structure," Journal of Economic Theory, Elsevier, vol. 156(C), pages 269-316.
    4. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    3. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    4. Vivi Alatas & Abhijit Banerjee & Arun G. Chandrasekhar & Rema Hanna & Benjamin A. Olken, 2016. "Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia," American Economic Review, American Economic Association, vol. 106(7), pages 1663-1704, July.
    5. Liangfei Qiu & Arunima Chhikara & Asoo Vakharia, 2021. "Multidimensional Observational Learning in Social Networks: Theory and Experimental Evidence," Information Systems Research, INFORMS, vol. 32(3), pages 876-894, September.
    6. Yiangos Papanastasiou, 2020. "Fake News Propagation and Detection: A Sequential Model," Management Science, INFORMS, vol. 66(5), pages 1826-1846, May.
    7. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    8. Navin Kartik & SangMok Lee & Tianhao Liu & Daniel Rappoport, 2024. "Beyond Unbounded Beliefs: How Preferences and Information Interplay in Social Learning," Econometrica, Econometric Society, vol. 92(4), pages 1033-1062, July.
    9. Song, Yangbo, 2016. "Social learning with endogenous observation," Journal of Economic Theory, Elsevier, vol. 166(C), pages 324-333.
    10. Jurui Zhang & Yong Liu & Yubo Chen, 2015. "Social Learning in Networks of Friends versus Strangers," Marketing Science, INFORMS, vol. 34(4), pages 573-589, July.
    11. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    12. Eyster, Erik & Galeotti, Andrea & Kartik, Navin & Rabin, Matthew, 2014. "Congested observational learning," Games and Economic Behavior, Elsevier, vol. 87(C), pages 519-538.
    13. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    14. Peng, Diefeng & Rao, Yulei & Sun, Xianming & Xiao, Erte, 2025. "Optional disclosure and observational learning," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    15. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    16. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.
    17. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    18. Arieli, Itai & Koren, Moran & Smorodinsky, Rann, 2022. "The implications of pricing on social learning," Theoretical Economics, Econometric Society, vol. 17(4), November.
    19. Aislinn Bohren, 2014. "Informational Herding with Model Misspecification, Second Version," PIER Working Paper Archive 15-022, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Nov 2014.
    20. Daron Acemoglu & Ali Makhdoumi & Azarakhsh Malekian & Asuman Ozdaglar, 2017. "Fast and Slow Learning From Reviews," NBER Working Papers 24046, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.03303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.