IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.05139.html
   My bibliography  Save this paper

Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis

Author

Listed:
  • Sadamori Kojaku
  • Giulio Cimini
  • Guido Caldarelli
  • Naoki Masuda

Abstract

Interbank markets are often characterised in terms of a core-periphery network structure, with a highly interconnected core of banks holding the market together, and a periphery of banks connected mostly to the core but not internally. This paradigm has recently been challenged for short time scales, where interbank markets seem better characterised by a bipartite structure with more core-periphery connections than inside the core. Using a novel core-periphery detection method on the eMID interbank market, we enrich this picture by showing that the network is actually characterised by multiple core-periphery pairs. Moreover, a transition from core-periphery to bipartite structures occurs by shortening the temporal scale of data aggregation. We further show how the global financial crisis transformed the market, in terms of composition, multiplicity and internal organisation of core-periphery pairs. By unveiling such a fine-grained organisation and transformation of the interbank market, our method can find important applications in the understanding of how distress can propagate over financial networks.

Suggested Citation

  • Sadamori Kojaku & Giulio Cimini & Guido Caldarelli & Naoki Masuda, 2018. "Structural changes in the interbank market across the financial crisis from multiple core-periphery analysis," Papers 1802.05139, arXiv.org.
  • Handle: RePEc:arx:papers:1802.05139
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.05139
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2016. "Pathways towards instability in financial networks," Papers 1602.05883, arXiv.org, revised Feb 2017.
    2. Allen, Franklin & Hryckiewicz, Aneta & Kowalewski, Oskar & Tümer-Alkan, Günseli, 2014. "Transmission of financial shocks in loan and deposit markets: Role of interbank borrowing and market monitoring," Journal of Financial Stability, Elsevier, vol. 15(C), pages 112-126.
    3. Craig, Ben & von Peter, Goetz, 2014. "Interbank tiering and money center banks," Journal of Financial Intermediation, Elsevier, vol. 23(3), pages 322-347.
    4. Douglas W. Diamond & Raghuram G. Rajan, 2009. "Fear of Fire Sales and the Credit Freeze," NBER Working Papers 14925, National Bureau of Economic Research, Inc.
    5. Paolo Angelini & Andrea Nobili & Cristina Picillo, 2011. "The Interbank Market after August 2007: What Has Changed, and Why?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 923-958, August.
    6. Adrian, Tobias & Shin, Hyun Song, 2010. "Liquidity and leverage," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 418-437, July.
    7. Iori, Giulia & Jafarey, Saqib & Padilla, Francisco G., 2006. "Systemic risk on the interbank market," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 525-542, December.
    8. Rama Cont & Lakshithe Wagalath, 2016. "Fire Sales Forensics: Measuring Endogenous Risk," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 835-866, October.
    9. Krause, Andreas & Giansante, Simone, 2012. "Interbank lending and the spread of bank failures: A network model of systemic risk," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 583-608.
    10. Stanislao Gualdi & Giulio Cimini & Kevin Primicerio & Riccardo Di Clemente & Damien Challet, 2016. "Statistically validated network of portfolio overlaps and systemic risk," Papers 1603.05914, arXiv.org, revised Sep 2016.
    11. Furfine, Craig H, 2003. " Interbank Exposures: Quantifying the Risk of Contagion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(1), pages 111-128, February.
    12. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    13. Rama Cont & Lakshithe Wagalath, 2012. "Fire Sales Forensics: Measuring Endogenous Risk," Working Papers hal-00697224, HAL.
    14. Jean-Charles Rochet & Xavier Freixas & Bruno Parigi, 2000. "Systemic risk, interbank relations, and liquidity provision by the central bank," Proceedings, Federal Reserve Bank of Cleveland, pages 611-640.
    15. León, Carlos & Berndsen, Ron J., 2014. "Rethinking financial stability: Challenges arising from financial networks’ modular scale-free architecture," Journal of Financial Stability, Elsevier, vol. 15(C), pages 241-256.
    16. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    17. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    18. in ’t Veld, Daan & van Lelyveld, Iman, 2014. "Finding the core: Network structure in interbank markets," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 27-40.
    19. Silva, Thiago Christiano & de Souza, Sergio Rubens Stancato & Tabak, Benjamin Miranda, 2016. "Network structure analysis of the Brazilian interbank market," Emerging Markets Review, Elsevier, vol. 26(C), pages 130-152.
    20. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    21. Caccioli, Fabio & Shrestha, Munik & Moore, Cristopher & Farmer, J. Doyne, 2014. "Stability analysis of financial contagion due to overlapping portfolios," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 233-245.
    22. Domenico Di Gangi & Fabrizio Lillo & Davide Pirino, 2015. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Papers 1509.00607, arXiv.org, revised Jul 2018.
    23. Martinez-Jaramillo, Serafin & Alexandrova-Kabadjova, Biliana & Bravo-Benitez, Bernardo & Solórzano-Margain, Juan Pablo, 2014. "An empirical study of the Mexican banking system’s network and its implications for systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 242-265.
    24. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    25. Soramäki, Kimmo & Bech, Morten L. & Arnold, Jeffrey & Glass, Robert J. & Beyeler, Walter E., 2007. "The topology of interbank payment flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 317-333.
    26. Helmut Elsinger & Alfred Lehar & Martin Summer, 2006. "Risk Assessment for Banking Systems," Management Science, INFORMS, vol. 52(9), pages 1301-1314, September.
    27. Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
    28. de Masi, G. & Iori, G. & Caldarelli, G., 2006. "A fitness model for the Italian interbank money market," Working Papers 06/08, Department of Economics, City University London.
    29. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    30. José Carreño & Rodrigo Cifuentes, 2017. "Identifying Complex Core-Periphery Structures in the Interbank Market," Working Papers Central Bank of Chile 813, Central Bank of Chile.
    31. Nier, Erlend & Yang, Jing & Yorulmazer, Tanju & Alentorn, Amadeo, 2007. "Network models and financial stability," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2033-2060, June.
    32. Viral V. Acharya & Ouarda Merrouche, 2013. "Precautionary Hoarding of Liquidity and Interbank Markets: Evidence from the Subprime Crisis," Review of Finance, European Finance Association, vol. 17(1), pages 107-160.
    33. Iori, Giulia & De Masi, Giulia & Precup, Ovidiu Vasile & Gabbi, Giampaolo & Caldarelli, Guido, 2008. "A network analysis of the Italian overnight money market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 259-278, January.
    34. Langfield, Sam & Liu, Zijun & Ota, Tomohiro, 2014. "Mapping the UK interbank system," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 288-303.
    35. Bardoscia, Marco & Battiston, Stefano & Caccioli, Fabio & Caldarelli, Guido, 2017. "Pathways towards instability in financial networks," LSE Research Online Documents on Economics 69904, London School of Economics and Political Science, LSE Library.
    36. Rodrigo Cifuentes & Hyun Song Shin & Gianluigi Ferrucci, 2005. "Liquidity Risk and Contagion," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 556-566, 04/05.
    37. R. Baupain & A. Durre, 2007. "The interday and intraday patterns of the overnight market : evidence from an electronic platform," Post-Print hal-00300195, HAL.
    38. Karl Finger & Daniel Fricke & Thomas Lux, 2013. "Network analysis of the e-MID overnight money market: the informational value of different aggregation levels for intrinsic dynamic processes," Computational Management Science, Springer, vol. 10(2), pages 187-211, June.
    39. Fricke, Daniel & Lux, Thomas, 2012. "Core-periphery structure in the overnight money market: Evidence from the e-MID trading platform," Kiel Working Papers 1759, Kiel Institute for the World Economy (IfW).
    40. Lee, Seung Hwan, 2013. "Systemic liquidity shortages and interbank network structures," Journal of Financial Stability, Elsevier, vol. 9(1), pages 1-12.
    41. Rochet, Jean-Charles & Tirole, Jean, 1996. "Interbank Lending and Systemic Risk," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(4), pages 733-762, November.
    42. repec:eee:finsta:v:35:y:2018:i:c:p:107-119 is not listed on IDEAS
    43. Michael Boss & Helmut Elsinger & Martin Summer & Stefan Thurner, 2004. "Network topology of the interbank market," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 677-684.
    44. Rama Cont & Amal Moussa & Edson B Santos, 2013. "Network structure and systemic risk in banking systems," Post-Print hal-00912018, HAL.
    45. Giulio Cimini & Tiziano Squartini & Diego Garlaschelli & Andrea Gabrielli, 2014. "Systemic risk analysis in reconstructed economic and financial networks," Papers 1411.7613, arXiv.org, revised May 2015.
    46. Hamed Amini & Rama Cont & Andreea Minca, 2016. "Resilience To Contagion In Financial Networks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 329-365, April.
    47. Gai, Prasanna & Haldane, Andrew & Kapadia, Sujit, 2011. "Complexity, concentration and contagion," Journal of Monetary Economics, Elsevier, vol. 58(5), pages 453-470.
    48. Seung Hwan Lee, 2013. "Systemic Liquidity Shortages and Interbank Network Structures," Working Papers 2013-4, Economic Research Institute, Bank of Korea.
    49. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2015. "DebtRank: A microscopic foundation for shock propagation," Papers 1504.01857, arXiv.org, revised Jun 2015.
    50. Anand, Kartik & van Lelyveld, Iman & Banai, Ádám & Friedrich, Soeren & Garratt, Rodney & Hałaj, Grzegorz & Fique, Jose & Hansen, Ib & Jaramillo, Serafín Martínez & Lee, Hwayun & Molina-Borboa, José Lu, 2018. "The missing links: A global study on uncovering financial network structures from partial data," Journal of Financial Stability, Elsevier, vol. 35(C), pages 107-119.
    51. Cocco, João F. & Gomes, Francisco J. & Martins, Nuno C., 2009. "Lending relationships in the interbank market," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 24-48, January.
    52. Giulio Cimini & Matteo Serri, 2016. "Entangling credit and funding shocks in interbank markets," Papers 1604.06629, arXiv.org.
    53. Tiziano Squartini & Assaf Almog & Guido Caldarelli & Iman van Lelyveld & Diego Garlaschelli & Giulio Cimini, 2016. "Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks," Papers 1606.07684, arXiv.org, revised Sep 2017.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.05139. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.