IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Financial Portfolio Optimization: Computationally guided agents to investigate, analyse and invest!?

Listed author(s):
  • Ankit Dangi

Financial portfolio optimization is a widely studied problem in mathematics, statistics, financial and computational literature. It adheres to determining an optimal combination of weights associated with financial assets held in a portfolio. In practice, it faces challenges by virtue of varying math. formulations, parameters, business constraints and complex financial instruments. Empirical nature of data is no longer one-sided; thereby reflecting upside and downside trends with repeated yet unidentifiable cyclic behaviours potentially caused due to high frequency volatile movements in asset trades. Portfolio optimization under such circumstances is theoretically and computationally challenging. This work presents a novel mechanism to reach an optimal solution by encoding a variety of optimal solutions in a solution bank to guide the search process for the global investment objective formulation. It conceptualizes the role of individual solver agents that contribute optimal solutions to a bank of solutions, a super-agent solver that learns from the solution bank, and, thus reflects a knowledge-based computationally guided agents approach to investigate, analyse and reach to optimal solution for informed investment decisions. Conceptual understanding of classes of solver agents that represent varying problem formulations and, mathematically oriented deterministic solvers along with stochastic-search driven evolutionary and swarm-intelligence based techniques for optimal weights are discussed. Algorithmic implementation is presented by an enhanced neighbourhood generation mechanism in Simulated Annealing algorithm. A framework for inclusion of heuristic knowledge and human expertise from financial literature related to investment decision making process is reflected via introduction of controlled perturbation strategies using a decision matrix for neighbourhood generation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number 1301.4194.

in new window

Date of creation: Jan 2013
Handle: RePEc:arx:papers:1301.4194
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
  2. Ardia, David & Boudt, Kris & Carl, Peter & Mullen, Katharine M. & Peterson, Brian, 2010. "Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization," MPRA Paper 22135, University Library of Munich, Germany.
  3. Greyserman, Alex & Jones, Douglas H. & Strawderman, William E., 2006. "Portfolio selection using hierarchical Bayesian analysis and MCMC methods," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 669-678, February.
  4. Susanne Still & Imre Kondor, 2009. "Regularizing Portfolio Optimization," Papers 0911.1694,
  5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
  6. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
  7. repec:dau:papers:123456789/4688 is not listed on IDEAS
  8. Carl Lindberg, 2009. "Portfolio optimization when expected stock returns are determined by exposure to risk," Papers 0906.2271,
  9. repec:wsi:ijtafx:v:08:y:2005:i:08:n:s0219024905003402 is not listed on IDEAS
  10. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
  11. Harry M. Markowitz, 2010. "Portfolio Theory: As I Still See It," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 1-23, December.
  12. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
  13. Alois Geyer & Michael Hanke & Alex Weissensteiner, 2009. "A stochastic programming approach for multi-period portfolio optimization," Computational Management Science, Springer, vol. 6(2), pages 187-208, May.
  14. Branke, J. & Scheckenbach, B. & Stein, M. & Deb, K. & Schmeck, H., 2009. "Portfolio optimization with an envelope-based multi-objective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 684-693, December.
  15. Steiner, Manfred & Wittkemper, Hans-Georg, 1997. "Portfolio optimization with a neural network implementation of the coherent market hypothesis," European Journal of Operational Research, Elsevier, vol. 100(1), pages 27-40, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.4194. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.