IDEAS home Printed from
   My bibliography  Save this paper

Financial Portfolio Optimization: Computationally guided agents to investigate, analyse and invest!?


  • Ankit Dangi


Financial portfolio optimization is a widely studied problem in mathematics, statistics, financial and computational literature. It adheres to determining an optimal combination of weights associated with financial assets held in a portfolio. In practice, it faces challenges by virtue of varying math. formulations, parameters, business constraints and complex financial instruments. Empirical nature of data is no longer one-sided; thereby reflecting upside and downside trends with repeated yet unidentifiable cyclic behaviours potentially caused due to high frequency volatile movements in asset trades. Portfolio optimization under such circumstances is theoretically and computationally challenging. This work presents a novel mechanism to reach an optimal solution by encoding a variety of optimal solutions in a solution bank to guide the search process for the global investment objective formulation. It conceptualizes the role of individual solver agents that contribute optimal solutions to a bank of solutions, a super-agent solver that learns from the solution bank, and, thus reflects a knowledge-based computationally guided agents approach to investigate, analyse and reach to optimal solution for informed investment decisions. Conceptual understanding of classes of solver agents that represent varying problem formulations and, mathematically oriented deterministic solvers along with stochastic-search driven evolutionary and swarm-intelligence based techniques for optimal weights are discussed. Algorithmic implementation is presented by an enhanced neighbourhood generation mechanism in Simulated Annealing algorithm. A framework for inclusion of heuristic knowledge and human expertise from financial literature related to investment decision making process is reflected via introduction of controlled perturbation strategies using a decision matrix for neighbourhood generation.

Suggested Citation

  • Ankit Dangi, 2013. "Financial Portfolio Optimization: Computationally guided agents to investigate, analyse and invest!?," Papers 1301.4194,
  • Handle: RePEc:arx:papers:1301.4194

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
    2. Ardia, David & Boudt, Kris & Carl, Peter & Mullen, Katharine M. & Peterson, Brian, 2010. "Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization," MPRA Paper 22135, University Library of Munich, Germany.
    3. Susanne Still & Imre Kondor, 2009. "Regularizing Portfolio Optimization," Papers 0911.1694,
    4. Greyserman, Alex & Jones, Douglas H. & Strawderman, William E., 2006. "Portfolio selection using hierarchical Bayesian analysis and MCMC methods," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 669-678, February.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    7. repec:dau:papers:123456789/4688 is not listed on IDEAS
    8. Carl Lindberg, 2009. "Portfolio optimization when expected stock returns are determined by exposure to risk," Papers 0906.2271,
    9. repec:wsi:ijtafx:v:08:y:2005:i:08:n:s0219024905003402 is not listed on IDEAS
    10. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    11. Harry M. Markowitz, 2010. "Portfolio Theory: As I Still See It," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 1-23, December.
    12. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
    13. Alois Geyer & Michael Hanke & Alex Weissensteiner, 2009. "A stochastic programming approach for multi-period portfolio optimization," Computational Management Science, Springer, vol. 6(2), pages 187-208, May.
    14. Branke, J. & Scheckenbach, B. & Stein, M. & Deb, K. & Schmeck, H., 2009. "Portfolio optimization with an envelope-based multi-objective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 684-693, December.
    15. Steiner, Manfred & Wittkemper, Hans-Georg, 1997. "Portfolio optimization with a neural network implementation of the coherent market hypothesis," European Journal of Operational Research, Elsevier, vol. 100(1), pages 27-40, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.4194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.