IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

On The Role Of The Growth Optimal Portfolio In Finance

Listed author(s):
  • ECKHARD PLATEN

The paper discusses various roles that the growth optimal portfolio (GOP) plays in finance. For the case of a continuous market we show how the GOP can be interpreted as a fundamental building block in financial market modeling, portfolio optimisation, contingent claim pricing and risk measurement. On the basis of a portfolio selection theorem, optimal portfolios are derived. These allocate funds into the GOP and the savings account. A risk aversion coefficient is introduced, controlling the amount invested in the savings account, which allows to characterize portfolio strategies that maximise expected utilities. Natural conditions are formulated under which the GOP appears as the market portfolio. A derivation of the intertemporal capital asset pricing model is given without relying on Markovianity, equilibrium arguments or utility functions. Fair contingent claim pricing, with the GOP as numeraire portfolio, is shown to generalise risk neutral and actuarial pricing. Finally, the GOP is described in various ways as the best performing portfolio. Copyright Blackwell Publishing Ltd/University of Adelaide and Flinders University 2005..

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/links/doi/10.1111/j.1467-8454.2005.00271.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Wiley Blackwell in its journal Australian Economic Papers.

Volume (Year): 44 (2005)
Issue (Month): 4 (December)
Pages: 365-388

as
in new window

Handle: RePEc:bla:ausecp:v:44:y:2005:i:4:p:365-388
Contact details of provider: Web page: http://www.blackwellpublishing.com/journal.asp?ref=0004-900X

Order Information: Web: http://www.blackwellpublishing.com/subs.asp?ref=0004-900X

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
  2. Ross, Stephen A., 1976. "The arbitrage theory of capital asset pricing," Journal of Economic Theory, Elsevier, vol. 13(3), pages 341-360, December.
  3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
  4. Eckhard Platen & Gerhard Stahl, 2003. "A Structure for General and Specific Market Risk," Computational Statistics, Springer, vol. 18(3), pages 355-373, September.
  5. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  6. Luenberger, David G., 1997. "Investment Science," OUP Catalogue, Oxford University Press, number 9780195108095, April.
  7. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
  8. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  9. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  10. Fleming, Wendell H. & Stein, Jerome L., 2004. "Stochastic optimal control, international finance and debt," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 979-996, May.
  11. Martin Kulldorff & Ajay Khanna, 1999. "A generalization of the mutual fund theorem," Finance and Stochastics, Springer, vol. 3(2), pages 167-185.
  12. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, 09.
  13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:ausecp:v:44:y:2005:i:4:p:365-388. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.