IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1005.5021.html
   My bibliography  Save this paper

Random Matrix Theory and Fund of Funds Portfolio Optimisation

Author

Listed:
  • Thomas Conlon
  • Heather J. Ruskin
  • Martin Crane

Abstract

The proprietary nature of Hedge Fund investing means that it is common practise for managers to release minimal information about their returns. The construction of a Fund of Hedge Funds portfolio requires a correlation matrix which often has to be estimated using a relatively small sample of monthly returns data which induces noise. In this paper random matrix theory (RMT) is applied to a cross-correlation matrix C, constructed using hedge fund returns data. The analysis reveals a number of eigenvalues that deviate from the spectrum suggested by RMT. The components of the deviating eigenvectors are found to correspond to distinct groups of strategies that are applied by hedge fund managers. The Inverse Participation ratio is used to quantify the number of components that participate in each eigenvector. Finally, the correlation matrix is cleaned by separating the noisy part from the non-noisy part of C. This technique is found to greatly reduce the difference between the predicted and realised risk of a portfolio, leading to an improved risk profile for a fund of hedge funds.

Suggested Citation

  • Thomas Conlon & Heather J. Ruskin & Martin Crane, 2010. "Random Matrix Theory and Fund of Funds Portfolio Optimisation," Papers 1005.5021, arXiv.org.
  • Handle: RePEc:arx:papers:1005.5021
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1005.5021
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sharkasi, Adel & Crane, Martin & Ruskin, Heather J. & Matos, Jose A., 2006. "The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 511-521.
    2. Zdzislaw Burda & Jerzy Jurkiewicz, 2003. "Signal and Noise in Financial Correlation Matrices," Papers cond-mat/0312496, arXiv.org, revised Feb 2004.
    3. Burda, Z. & Görlich, A. & Jarosz, A. & Jurkiewicz, J., 2004. "Signal and noise in correlation matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 295-310.
    4. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1998. "Noise dressing of financial correlation matrices," Science & Finance (CFM) working paper archive 500051, Science & Finance, Capital Fund Management.
    5. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    6. Miceli, M.A. & Susinno, G., 2004. "Ultrametricity in fund of funds diversification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 95-99.
    7. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1999. "Random matrix theory and financial correlations," Science & Finance (CFM) working paper archive 500053, Science & Finance, Capital Fund Management.
    8. Burda, Zdzisław & Jurkiewicz, Jerzy, 2004. "Signal and noise in financial correlation matrices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 67-72.
    9. Sharifi, S. & Crane, M. & Shamaie, A. & Ruskin, H., 2004. "Random matrix theory for portfolio optimization: a stability approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 629-643.
    10. Wilcox, Diane & Gebbie, Tim, 2004. "On the analysis of cross-correlations in South African market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 294-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghislain Yanou, 2013. "Extension of the random matrix theory to the L-moments for robust portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1653-1673, October.
    2. Ankit Dangi, 2013. "Financial Portfolio Optimization: Computationally guided agents to investigate, analyse and invest!?," Papers 1301.4194, arXiv.org.
    3. Thomas Conlon & Heather J. Ruskin & Martin Crane, 2010. "Cross-Correlation Dynamics in Financial Time Series," Papers 1002.0321, arXiv.org.
    4. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    5. Sandoval, Leonidas Junior & Bruscato, Adriana & Venezuela, Maria Kelly, 2012. "Building portfolios of stocks in the São Paulo Stock Exchange using Random Matrix Theory," Insper Working Papers wpe_270, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    6. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    7. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    8. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    9. Leonidas Sandoval Junior & Adriana Bruscato & Maria Kelly Venezuela, 2012. "Building portfolios of stocks in the S\~ao Paulo Stock Exchange using Random Matrix Theory," Papers 1201.0625, arXiv.org, revised Mar 2013.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1005.5021. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.