IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0312496.html
   My bibliography  Save this paper

Signal and Noise in Financial Correlation Matrices

Author

Listed:
  • Zdzislaw Burda
  • Jerzy Jurkiewicz

Abstract

Using Random Matrix Theory one can derive exact relations between the eigenvalue spectrum of the covariance matrix and the eigenvalue spectrum of its estimator (experimentally measured correlation matrix). These relations will be used to analyze a particular case of the correlations in financial series and to show that contrary to earlier claims, correlations can be measured also in the ``random'' part of the spectrum. Implications for the portfolio optimization are briefly discussed.

Suggested Citation

  • Zdzislaw Burda & Jerzy Jurkiewicz, 2003. "Signal and Noise in Financial Correlation Matrices," Papers cond-mat/0312496, arXiv.org, revised Feb 2004.
  • Handle: RePEc:arx:papers:cond-mat/0312496
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0312496
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    2. Thomas Conlon & Heather J. Ruskin & Martin Crane, 2010. "Cross-Correlation Dynamics in Financial Time Series," Papers 1002.0321, arXiv.org.
    3. Núñez-Mora, José Antonio & Mata-Mata, Leovardo, 2014. "Una aplicación de la teoría de matrices aleatorias para analizar la variación del rendimiento de diferentes commodities a lo largo del periodo 2000-2012," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(41), pages 7-20, segundo s.
    4. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    5. Eterovic, Nicolas A. & Eterovic, Dalibor S., 2013. "Separating the wheat from the chaff: Understanding portfolio returns in an emerging market," Emerging Markets Review, Elsevier, vol. 16(C), pages 145-169.
    6. Martins, André C.R., 2007. "Non-stationary correlation matrices and noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 552-558.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0312496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.