IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Random matrix theory for portfolio optimization: a stability approach

  • Sharifi, S.
  • Crane, M.
  • Shamaie, A.
  • Ruskin, H.
Registered author(s):

    We apply random matrix theory (RMT) to an empirically measured financial correlation matrix, C, and show that this matrix contains a large amount of noise. In order to determine the sensitivity of the spectral properties of a random matrix to noise, we simulate a set of data and add different volumes of random noise. Having ascertained that the eigenspectrum is independent of the standard deviation of added noise, we use RMT to determine the noise percentage in a correlation matrix based on real data from S&P500. Eigenvalue and eigenvector analyses are applied and the experimental results for each of them are presented to identify qualitatively and quantitatively different spectral properties of the empirical correlation matrix to a random counterpart. Finally, we attempt to separate the noisy part from the non-noisy part of C. We apply an existing technique to cleaning C and then discuss its associated problems. We propose a technique of filtering C that has many advantages, from the stability point of view, over the existing method of cleaning.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103011841
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 335 (2004)
    Issue (Month): 3 ()
    Pages: 629-643

    as
    in new window

    Handle: RePEc:eee:phsmap:v:335:y:2004:i:3:p:629-643
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:335:y:2004:i:3:p:629-643. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.