IDEAS home Printed from https://ideas.repec.org/p/ajf/louvlf/2019003.html
   My bibliography  Save this paper

Minimum Rényi entropy portfolios

Author

Listed:
  • Lassance, Nathan
  • Vrins, Frédéric

Abstract

Accounting for the non-normality of asset returns remains challenging in robust portfolio optimization. In this article, we tackle this problem by assessing the risk of the portfolio via the "amount of randomness" conveyed by its returns. We achieve this using an objective function that relies on the exponential of Rényi entropy, an information-theoretic criterion that precisely quanties the uncertainty embedded in a distribution, accounting for higher-order moments. Compared to Shannon entropy, Renyi entropy features a parameter that controls the way uncertainty is measured. A Gram-Charlier expansion shows that the parameter controls for the relative contributions of the central (variance) and tail (kurtosis) parts of the distribution. We further rely on a non-parametric estimator of the exponential Renyi entropy, which extends a robust sample-spacings estimator initially designed for Shannon entropy. A portfolio selection application illustrates that minimizing Renyi entropy yields portfolios that outperform robust minimum variance portfolios in terms of risk-return-turnover trade-off.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Lassance, Nathan & Vrins, Frédéric, 2019. "Minimum Rényi entropy portfolios," LIDAM Discussion Papers LFIN 2019003, Université catholique de Louvain, Louvain Finance (LFIN).
  • Handle: RePEc:ajf:louvlf:2019003
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A211168/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    3. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    4. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    5. Zografos, K. & Nadarajah, S., 2005. "Expressions for Rényi and Shannon entropies for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 71-84, January.
    6. A. Dionisio & R. Menezes & D. A. Mendes, 2006. "An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 161-164, March.
    7. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.
    8. J. P. Royston, 1982. "Expected Normal Order Statistics (Exact and Approximate)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 161-165, June.
    9. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    10. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    11. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    12. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2008. "Scoring Rules, Generalized Entropy, and Utility Maximization," Operations Research, INFORMS, vol. 56(5), pages 1146-1157, October.
    13. Mihaly Ormos & David Zibriczky, 2015. "Entropy-Based Financial Asset Pricing," Papers 1501.01155, arXiv.org.
    14. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    15. Mihály Ormos & Dávid Zibriczky, 2014. "Entropy-Based Financial Asset Pricing," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    16. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
    17. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    18. Ali E. Abbas, 2006. "Maximum Entropy Utility," Operations Research, INFORMS, vol. 54(2), pages 277-290, April.
    19. Anil Bera & Sung Park, 2008. "Optimal Portfolio Diversification Using the Maximum Entropy Principle," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 484-512.
    20. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    21. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    22. Zsolt Ugray & Leon Lasdon & John Plummer & Fred Glover & James Kelly & Rafael Martí, 2007. "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 328-340, August.
    23. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    24. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    25. Vanduffel, Steven & Yao, Jing, 2017. "A stein type lemma for the multivariate generalized hyperbolic distribution," European Journal of Operational Research, Elsevier, vol. 261(2), pages 606-612.
    26. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    27. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    28. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    29. Yue Qi & Ralph E. Steuer & Maximilian Wimmer, 2017. "An analytical derivation of the efficient surface in portfolio selection with three criteria," Annals of Operations Research, Springer, vol. 251(1), pages 161-177, April.
    30. Levy, Haim & Levy, Moshe, 2014. "The benefits of differential variance-based constraints in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 372-381.
    31. Yang, Jiping & Qiu, Wanhua, 2005. "A measure of risk and a decision-making model based on expected utility and entropy," European Journal of Operational Research, Elsevier, vol. 164(3), pages 792-799, August.
    32. Sbuelz, Alessandro & Trojani, Fabio, 2008. "Asset prices with locally constrained-entropy recursive multiple-priors utility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3695-3717, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devi, Sandhya, 2018. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," MPRA Paper 91614, University Library of Munich, Germany.
    2. Sandhya Devi, 2019. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," Papers 1901.04945, arXiv.org, revised Mar 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    2. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    3. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    4. Kremer, Philipp J. & Lee, Sangkyun & Bogdan, Małgorzata & Paterlini, Sandra, 2020. "Sparse portfolio selection via the sorted ℓ1-Norm," Journal of Banking & Finance, Elsevier, vol. 110(C).
    5. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    6. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    7. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    8. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    9. McDowell, Shaun, 2018. "The benefits of international diversification with weight constraints: A cross-country examination," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 99-109.
    10. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    11. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    14. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    15. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    16. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    17. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
    18. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    19. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    20. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.

    More about this item

    Keywords

    portfolio selection ; Shannon entropy ; Rényi entropy ; risk measure ; information theory;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajf:louvlf:2019003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Séverine De Visscher). General contact details of provider: https://edirc.repec.org/data/lfuclbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.