IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v234y2014i2p372-381.html
   My bibliography  Save this article

The benefits of differential variance-based constraints in portfolio optimization

Author

Listed:
  • Levy, Haim
  • Levy, Moshe

Abstract

The main problem of portfolio optimization is parameter estimation error. Various methods have been suggested to mitigate this problem, among which are shrinkage, resampling, Bayesian updating, naïve diversification, and imposing constraints on the portfolio weights. This study suggests two substantial extensions of the constrained optimization approach: the Variance-Based Constraints (VBC), and the Global Variance-Based Constraints (GVBC) methods. By the VBC method the constraint imposed on the weight of a given stock is inversely proportional to its standard deviation: the higher a stock’s sample standard deviation, the higher the potential estimation error of its parameters, and therefore the tighter the constraint imposed on its weight. GVBC employs a similar idea, but instead of imposing a sharp boundary constraint on each stock, a quadratic “cost” is assigned to deviations from the naive 1/N weight, and a single global constraint is imposed on the total cost of all deviations. Comparing ten optimization methods we find that the two new suggested methods typically yield the best performance, as measured by the Sharpe ratio. GVBC ranks first. These results are obtained for two different datasets, and are also robust to the number of assets under consideration.

Suggested Citation

  • Levy, Haim & Levy, Moshe, 2014. "The benefits of differential variance-based constraints in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 372-381.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:372-381
    DOI: 10.1016/j.ejor.2013.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713003172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    2. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    5. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    6. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    7. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    8. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    9. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    10. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    11. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    12. Huang, Xiaoxia, 2008. "Portfolio selection with a new definition of risk," European Journal of Operational Research, Elsevier, vol. 186(1), pages 351-357, April.
    13. Levy, Haim, 1983. "The Capital Asset Pricing Model: Theory and Empiricism," Economic Journal, Royal Economic Society, vol. 93(369), pages 145-165, March.
    14. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," Review of Economic Studies, Oxford University Press, vol. 36(3), pages 335-346.
    15. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, Oxford University Press, vol. 25(2), pages 65-86.
    16. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
    17. Moshe Levy & Richard Roll, 2010. "The Market Portfolio May Be Mean/Variance Efficient After All," Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2464-2491, June.
    18. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    19. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    20. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    21. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    22. Best, Michael J. & Grauer, Robert R., 1992. "Positively Weighted Minimum-Variance Portfolios and the Structure of Asset Expected Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 27(4), pages 513-537, December.
    23. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    24. Haim Levy, 2004. "Prospect Theory and Mean-Variance Analysis," Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1015-1041.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levy, Haim & Simaan, Yusif, 2016. "More possessions, more worry," European Journal of Operational Research, Elsevier, vol. 255(3), pages 893-902.
    2. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    3. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    4. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    5. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    6. Haim Levy & Enrico G. De Giorgi & Thorsten Hens, 2012. "Two Paradigms and Nobel Prizes in Economics: a Contradiction or Coexistence?," European Financial Management, European Financial Management Association, vol. 18(2), pages 163-182, March.
    7. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    8. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    9. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    10. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    11. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    12. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    13. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    14. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    15. Behr, Patrick & Guettler, Andre & Miebs, Felix, 2013. "On portfolio optimization: Imposing the right constraints," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1232-1242.
    16. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    17. Haim Levy, 2017. "What is the Economic Cost of the Investment Home Bias?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 897-929, August.
    18. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    19. Levy, Moshe & Levy, Haim, 2015. "Keeping up with the Joneses and optimal diversification," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 29-38.
    20. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:372-381. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.