IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/3062.html

Minimum Rényi entropy portfolios

Author

Listed:
  • Nathan Lassance
  • Frédéric Vrins

Abstract

Accounting for the non-normality of asset returns remains challenging in robust portfolio optimization. In this article, we tackle this problem by assessing the risk of the portfolio through the "amount of randomness" conveyed by its returns. We achieve this by using an objective function that relies on the exponential of R\'enyi entropy, an information-theoretic criterion that precisely quantifies the uncertainty embedded in a distribution, accounting for higher-order moments. Compared to Shannon entropy, R\'enyi entropy features a parameter that can be tuned to play around the notion of uncertainty. A Gram-Charlier expansion shows that it controls the relative contributions of the central (variance) and tail (kurtosis) parts of the distribution in the measure. We further rely on a non-parametric estimator of the exponential R\'enyi entropy that extends a robust sample-spacings estimator initially designed for Shannon entropy. A portfolio selection application illustrates that minimizing R\'enyi entropy yields portfolios that outperform state-of-the-art minimum variance portfolios in terms of risk-return-turnover trade-off.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nathan Lassance & Frédéric Vrins, 2019. "Minimum Rényi entropy portfolios," LIDAM Reprints CORE 3062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:3062
    Note: In : Annals of Operations Research, 2019
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbagli, Matteo & François, Pascal & Gauthier, Geneviève & Vrins, Frédéric, 2025. "The role of CDS spreads in explaining bond recovery rates," Journal of Banking & Finance, Elsevier, vol. 174(C).
    2. Sandhya Devi, 2019. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," Papers 1901.04945, arXiv.org, revised Mar 2019.
    3. Sandhya Devi & Sherman Page, 2022. "Tsallis Relative entropy from asymmetric distributions as a risk measure for financial portfolios," Papers 2205.13625, arXiv.org.
    4. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    5. Siddhartha Chakraborty & Biswabrata Pradhan, 2024. "On cumulative residual extropy of coherent and mixed systems," Annals of Operations Research, Springer, vol. 340(1), pages 59-81, September.
    6. Devi, Sandhya, 2018. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," MPRA Paper 91614, University Library of Munich, Germany.
    7. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:3062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.