IDEAS home Printed from https://ideas.repec.org/p/ags/saea18/266691.html
   My bibliography  Save this paper

Estimating Agricultural Acreage Responses to Input Prices: Groundwater in California

Author

Listed:
  • Stevens, Andrew W.

Abstract

How does agricultural land use respond to variation in the price of agricultural water? Answering this question is difficult in California where there is no well-functioning market for water. To overcome this challenge, I use variation in groundwater depth over space and time to proxy for the price of water. This makes sense in a setting where groundwater pumping is unregulated, meaning the effective price of pumped groundwater is the energy cost to pump it. I construct a panel of agricultural fields in Fresno County, California from 2008 to 2016, and estimate a fixed effects model to estimate groundwater depth's effect on transition probabilities between different categories of land cover. I find that groundwater depth reduces the likelihood that parcels will be planted to an annual crop, but increases the likelihood of fallowing land. Groundwater depth seems to have a less profound effect on choosing to plant perennial crops.

Suggested Citation

  • Stevens, Andrew W., 2018. "Estimating Agricultural Acreage Responses to Input Prices: Groundwater in California," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266691, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea18:266691
    DOI: 10.22004/ag.econ.266691
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/266691/files/Estimating%20Agricultural%20Acreage%20Responses%20to%20Input%20Prices_%20Groundwater%20in%20California.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/266691/files/Estimating%20Agricultural%20Acreage%20Responses%20to%20Input%20Prices_%20Groundwater%20in%20California.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.266691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steven Buck & Maximilian Auffhammer & David Sunding, 2014. "Land Markets and the Value of Water: Hedonic Analysis Using Repeat Sales of Farmland," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 953-969.
    2. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    3. Stevens, Andrew, 2015. "Fueling Local Water Pollution: Ethanol Refineries, Land Use, and Nitrate Runoff," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205741, Agricultural and Applied Economics Association.
    4. Dinar, Ariel, 1994. "Impact of energy cost and water resource availability on agriculture and ground water quality in California," Resource and Energy Economics, Elsevier, vol. 16(1), pages 47-66, March.
    5. Karina Schoengold & David L. Sunding, 2014. "The impact of water price uncertainty on the adoption of precision irrigation systems," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 729-743, November.
    6. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    7. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    2. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    3. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    4. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    5. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    6. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    7. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    8. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities under Optimal Water Inventory Management," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6c24636b, Department of Agricultural & Resource Economics, UC Berkeley.
    9. Moreno, Georgina & Sunding, David L., 2003. "Simultaneous Estimation Of Technology Adoption And Land Allocation," 2003 Annual meeting, July 27-30, Montreal, Canada 22134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    11. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    12. Stigler, Matthieu M., 2018. "Supply response at the field-level: disentangling area and yield effects," 2018 Annual Meeting, August 5-7, Washington, D.C. 274343, Agricultural and Applied Economics Association.
    13. Moreno, Georgina & Sunding, David L., 2000. "Irrigation Technology Investment When The Price Of Water Is Stochastic," 2000 Annual meeting, July 30-August 2, Tampa, FL 21730, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Rosene, Robert & Kovacs, Kent F., 2018. "Factors influencing the adoption of irrigation measurement tools in the Arkansas Delta," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266445, Southern Agricultural Economics Association.
    15. Moreno, Georgina & Sunding, David L. & Schoengold, Karina, 2004. "Panel Estimation Of Water Demand Based On An Episode Of Rate Reform," 2004 Annual meeting, August 1-4, Denver, CO 20342, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    17. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    18. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
    19. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    20. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," EconomiX Working Papers 2012-8, University of Paris Nanterre, EconomiX.

    More about this item

    Keywords

    Agricultural and Food Policy; Environmental Economics and Policy; Land Economics/Use; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea18:266691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.