IDEAS home Printed from https://ideas.repec.org/p/ags/aare14/165842.html
   My bibliography  Save this paper

Farm productivity in an Australian region affected by a changing climate

Author

Listed:
  • Islam, Nazrul
  • Xayavong, Vilaphonh
  • Anderton, Lucy
  • Feldman, David

Abstract

Since the mid-1970s the south-west of Australia has displayed a warming and drying trend in its climate. Using parametric and non-parametric methods this paper provides a decadal assessment of the profitability, productivity and productivity components of over 250 farms in the region. The farm panel data are detailed descriptions of the physical and financial characteristics of each farm business from 2002/3 to 2011/12, a period of challenging weather-years. This study yields insights about farm characteristics and management strategies that have weakened or strengthened farm viability over the decade. In spite of the climate challenges experienced in the region during that decade, a majority of farm businesses improved their productivity and profitability.

Suggested Citation

  • Islam, Nazrul & Xayavong, Vilaphonh & Anderton, Lucy & Feldman, David, 2014. "Farm productivity in an Australian region affected by a changing climate," 2014 Conference (58th), February 4-7, 2014, Port Macquarie, Australia 165842, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare14:165842
    DOI: 10.22004/ag.econ.165842
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/165842/files/Islam%20CP.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.165842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher J. O'Donnell, 2010. "Measuring and decomposing agricultural productivity and profitability change ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 527-560, October.
    2. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    3. David Hadley & Xavier Irz, 2008. "Productivity and farm profit - a microeconomic analysis of the cereal sector in England and Wales," Applied Economics, Taylor & Francis Journals, vol. 40(5), pages 613-624.
    4. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    5. Hughes, Neal & Lawson, Kenton & Davidson, Alistair & Jackson, Tom & Sheng, Yu, 2011. "Productivity pathways: climate-adjusted production frontiers for the Australian broadacre cropping industry," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100563, Australian Agricultural and Resource Economics Society.
    6. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    7. Johannes Van Biesebroeck, 2007. "Robustness Of Productivity Estimates," Journal of Industrial Economics, Wiley Blackwell, vol. 55(3), pages 529-569, September.
    8. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    9. Lau, Lawrence J. & Yotopoulos, Pan A., 1989. "The meta-production function approach to technological change in world agriculture," Journal of Development Economics, Elsevier, vol. 31(2), pages 241-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Lefroy & James Key, 2018. "Determinants of Broadacre Farming Efficiency in Western Australia: A Stochastic Frontier Analysis," Economic Papers, The Economic Society of Australia, vol. 37(2), pages 180-196, June.
    2. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Nazrul & Xayavong, Vilaphonh & Kingwell, Ross, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), April.
    2. Islam, Nazrul & Kingwell, Ross & Xayavong, Vilaphonh & Anderton, Lucy & Feldman, David & Speijers, Jane, 2018. "Broadacre Farm Productivity Trajectories and Farm Characteristics," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 26.
    3. Yung-Hsiang LU & Ku-Hsieh CHEN & Chun-Cheng WU, 2015. "Cross-country analysis of efficiency and productivity in the biotech industry: an application of the generalized metafrontier Malmquist productivity index," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(3), pages 116-134.
    4. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    5. Gatti, Nicolas & Lema, Daniel & Brescia, Victor, 2015. "A Meta-Frontier Approach to Measuring Technical Efficiency and Technology Gaps in Beef Cattle Production in Argentina," 2015 Conference, August 9-14, 2015, Milan, Italy 211647, International Association of Agricultural Economists.
    6. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    7. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    8. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    9. Nikos Chatzistamoulou & Phoebe Koundouri, 2020. "The Economics of Sustainable Development," DEOS Working Papers 2005, Athens University of Economics and Business.
    10. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    11. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2019. "Performance comparison of management groups under centralised management," European Journal of Operational Research, Elsevier, vol. 278(3), pages 845-854.
    12. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    13. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    14. Elwin G. Smith & Mark E. Eiswerth & Terrence S. Veeman, 2010. "Current and Emerging Water Issues in Agriculture: An Overview," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(s1), pages 403-409, December.
    15. Xiongfeng Pan & Jing Zhang & Changyu Li & Xianyou Pan & Jinbo Song, 2019. "Analysis of China’s regional wind power generation efficiency and its influencing factors," Energy & Environment, , vol. 30(2), pages 254-271, March.
    16. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    17. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    18. Daghagh Yazd, Sahar & Wheeler, Sarah Ann & Zuo, Alec, 2020. "Understanding the impacts of water scarcity and socio-economic demographics on farmer mental health in the Murray-Darling Basin," Ecological Economics, Elsevier, vol. 169(C).
    19. Tsui-Yueh Cho & Tsai-Yi Wang, 2018. "Estimations of cost metafrontier Malmquist productivity index: using international tourism hotels in Taiwan as an example," Empirical Economics, Springer, vol. 55(4), pages 1661-1694, December.
    20. Phuc Trong Ho & Pham Xuan Hung & Nguyen Duc Tien, 2023. "Effects of varieties and seasons on cost efficiency in rice farming: A stochastic metafrontier approach," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society, vol. 13(2), pages 120-129.

    More about this item

    Keywords

    Financial Economics; Production Economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare14:165842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.