IDEAS home Printed from https://ideas.repec.org/a/bla/econpa/v37y2018i2p180-196.html
   My bibliography  Save this article

Determinants of Broadacre Farming Efficiency in Western Australia: A Stochastic Frontier Analysis

Author

Listed:
  • Tim Lefroy
  • James Key

Abstract

We analyse a rich panel dataset of farm production to determine the potential for broadacre farms in Western Australia to increase productivity through exploiting economies of scale and increasing technical efficiency. Using stochastic frontier analysis, we find that the majority of farms are operating below the optimal scale and would benefit from expansion, suggesting that a documented trend towards larger farms is desirable. We also observe a reasonable proportion of farms significantly below the efficient frontier, while differences between regional production functions and the metafrontier further contribute to inefficiency. Determinants of technical inefficiency were examined in the efficiency effects model; the adoption of technologies was aligned with reducing inefficiency, particularly in the cropping sector. This suggests the deployment of existing technologies should be a priority for both farmers and policy‐makers to further improve the efficiency of broadacre farms.

Suggested Citation

  • Tim Lefroy & James Key, 2018. "Determinants of Broadacre Farming Efficiency in Western Australia: A Stochastic Frontier Analysis," Economic Papers, The Economic Society of Australia, vol. 37(2), pages 180-196, June.
  • Handle: RePEc:bla:econpa:v:37:y:2018:i:2:p:180-196
    DOI: 10.1111/1759-3441.12211
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1759-3441.12211
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1759-3441.12211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Langemeier, Michael & Bradford, Kelly, 2006. "An Examination of the Relationship Between Overall Inefficiency and Farm Characteristics," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2006, pages 1-8.
    2. Aly, Hassan Y. & Belbase, Krishna & Grabowski, Richard & Kraft, Steven, 1987. "The Technical Efficiency of Illinois Grain Farms: An Application of a Ray-Homothetic Production Function," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 19(1), pages 69-78, July.
    3. Helfand, Steven M. & Levine, Edward S., 2004. "Farm size and the determinants of productive efficiency in the Brazilian Center-West," Agricultural Economics, Blackwell, vol. 31(2-3), pages 241-249, December.
    4. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    5. Mugera, Amin W. & Nyambane, Gerald G., 2015. "Impact of debt structure on production efficiency and financial performance of Broadacre farms in Western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    6. Kingwell, Ross S., 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-23.
    7. Yu Sheng & Shiji Zhao & Katarina Nossal & Dandan Zhang, 2015. "Productivity and farm size in Australian agriculture: reinvestigating the returns to scale," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 16-38, January.
    8. Greene, William H., 1980. "On the estimation of a flexible frontier production model," Journal of Econometrics, Elsevier, vol. 13(1), pages 101-115, May.
    9. Sheng, CP, 2014. "Elasticity of Substitution and Farm Heterogeneity in TFP and Size: A Theoretical Framework and Empirical Application to Australian Broadacre Farms," 2014 Conference (58th), February 4-7, 2014, Port Macquarie, Australia 165874, Australian Agricultural and Resource Economics Society.
    10. Ross Kingwell, 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 12-34, January.
    11. Islam, Nazrul & Xayavong, Vilaphonh & Anderton, Lucy & Feldman, David, 2014. "Farm productivity in an Australian region affected by a changing climate," 2014 Conference (58th), February 4-7, 2014, Port Macquarie, Australia 165842, Australian Agricultural and Resource Economics Society.
    12. Tim Lefroy & James Key & Ross Kingwell, 2016. "A Longitudinal Examination of Broadacre Farm Size and Performance in Western Australia," Economics Discussion / Working Papers 16-17, The University of Western Australia, Department of Economics.
    13. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    14. Mugera, Amin W. & Langemeier, Michael R., 2011. "Does Farm Size and Specialization Matter for Productive Efficiency? Results from Kansas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(4), pages 515-528, November.
    15. Ruhul A. Salim & Nazrul Islam, 2010. "Exploring the impact of R&D and climate change on agricultural productivity growth: the case of Western Australia ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 561-582, October.
    16. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazrul Islam & Vilaphonh Xayavong & Ross Kingwell, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 147-170, April.
    2. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    3. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    4. Madau, Fabio A., 2005. "Technical Efficiency in Organic Farming: An Application on Italian Cereal Farms Using a Parametric Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24545, European Association of Agricultural Economists.
    5. Xiangfei Xin & Yi Zhang & Jimin Wang & John Alexander Nuetah, 2016. "Effects of Farm Size on Technical Efficiency in China's Broiler Sector: A Stochastic Meta-Frontier Approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 493-516, September.
    6. Lawes, R.A. & Kingwell, R.S., 2012. "A longitudinal examination of business performance indicators for drought-affected farms," Agricultural Systems, Elsevier, vol. 106(1), pages 94-101.
    7. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    8. Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.
    9. Wen-Ling Hsiao & Jin-Li Hu & Chan Hsiao & Ming-Chung Chang, 2018. "Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis," Energies, MDPI, vol. 12(1), pages 1-11, December.
    10. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    11. Hasan Dudu & Erol H. Cakmak & Nadir Ocal, 2015. "Drivers of Farm Efficiency in Turkey: A Stochastic Frontier Analysis," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 1(1), pages 45-63, June.
    12. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    13. Wirat Krasachat & Suthathip Yaisawarng, 2021. "Directional Distance Function Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    14. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    15. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    16. Inyoung Park & Jieon Lee & Jungwoo Nam & Yuri Jo & Daeho Lee, 2022. "Which networking strategy improves ICT startup companies' technical efficiency?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2434-2443, September.
    17. Edward Ebo ONUMAH & Bernhard BRÜMMER & Gabriele HÖRSTGEN-SCHWARK, 2010. "Productivity of the hired and family labour and determinants of technical inefficiency in Ghana's fish farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 56(2), pages 79-88.
    18. Roberto Furesi & Fabio Madau & Pietro Pulina, 2013. "Technical efficiency in the sheep dairy industry: an application on the Sardinian (Italy) sector," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 1(1), pages 1-11, December.
    19. Weifeng Xu & Qingsong Ruan & Chang Liu, 2019. "Can the Famous University Experience of Top Managers Improve Corporate Performance? Evidence from China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    20. Stefani, Gianluca & Gadanakis, Yiorgos & Lombardi, Ginevra Virginia & Tiberti, Marco, 2017. "The impact of financial leverage on farms capacity to react in market shocks," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261156, European Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:econpa:v:37:y:2018:i:2:p:180-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/esausea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.