IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205756.html
   My bibliography  Save this paper

Risking-sharing Efficiency of Hedging Strategies

Author

Listed:
  • van Kooten, G Cornelis
  • Guo, Changhao
  • Sun, Baojing

Abstract

Since agricultural production is significantly and directly influenced by weather, financial weather products based on temperature have been developed in recent decades. The crop producer can now hedge adverse temperature outcomes in either the exchange market or the over-the-corner (OTC) market. However, exchange-traded contracts invariably carry geographic basis risk because of differences in the market-quoted and local temperature outcomes. OTC option contracts, on the other hand, are at risk of possible default by the counterparty. Therefore, a portfolio combining OTC with exchange-traded contracts could potentially be used by crop producers to reduce overall income risk. In this paper, we examine the performances of these three alternative hedging strategies on the uncertainty of crop producer’s income. Using a case study for western Canada, we find that a portfolio that combines OTC and exchange-traded contracts provides a most effective means of reducing potential risks, compared with stand-alone OTC contracts or exchange-market contracts because of their higher default and geographic basis risks, respectively.

Suggested Citation

  • van Kooten, G Cornelis & Guo, Changhao & Sun, Baojing, 2015. "Risking-sharing Efficiency of Hedging Strategies," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205756, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205756
    DOI: 10.22004/ag.econ.205756
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205756/files/RiskSharingEfficiency_Kooten__R.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    2. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    3. Linda L. Golden & Mulong Wang & Chuanhou Yang, 2007. "Handling Weather Related Risks Through the Financial Markets: Considerations of Credit Risk, Basis Risk, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 319-346, June.
    4. Joshua D. Woodard & Philip Garcia, 2008. "Basis risk and weather hedging effectiveness," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 99-117, May.
    5. Paulson, Nicholas D. & Hart, Chad E., 2006. "A Spatial Approach to Addressing Weather Derivative Basis Risk: A Drought Insurance Example," 2006 Annual meeting, July 23-26, Long Beach, CA 21249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Dwight R. Sanders, 2004. "Pricing Weather Derivatives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1005-1017.
    7. Martin, Steven W. & Barnett, Barry J. & Coble, Keith H., 2001. "Developing And Pricing Precipitation Insurance," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(1), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Li, 2008. "Three essays on agricultural risk and insurance," ISU General Staff Papers 2008010108000016857, Iowa State University, Department of Economics.
    2. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    3. Deng, Xiaohui & Barnett, Barry J. & Yu, Yingzhuo & Hoogenboom, Gerrit & Garcia, Axel Garcia y, 2008. "Alternative Crop Insurance Indexes," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 223-237, April.
    4. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    5. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2020. "Approaching rainfall-based weather derivatives pricing and operational challenges," Review of Derivatives Research, Springer, vol. 23(2), pages 163-190, July.
    6. Turvey, Calum G. & Weersink, Alfons, 2005. "Pricing Weather Insurance with a Random Strike Price: An Application to the Ontario Ice Wine Harvest," 2005 Annual meeting, July 24-27, Providence, RI 19255, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Rong Kong & Calum G. Turvey & Guangwen He & Jiujie Ma & Patrick Meagher, 2011. "Factors influencing Shaanxi and Gansu farmers' willingness to purchase weather insurance," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 3(4), pages 423-440, November.
    8. Lin, Shanshan & Mullen, Jeffrey D. & Hoogenboom, Gerrit, 2009. "Spatial and Temporal On-Farm Risk Management - Crop Production Scheduling and Index Insurance Strategies," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49350, Agricultural and Applied Economics Association.
    9. Doms, Juliane, 2017. "Put, call or strangle? About the challenges in designing weather index insurances to hedge performance risk in agriculture," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261990, German Association of Agricultural Economists (GEWISOLA).
    10. Turvey, Calum G. & Chantarat, Sommarat, 2006. "Weather-Linked Bonds," 2006 Agricultural and Rural Finance Markets in Transition, October 2-3, 2006, Washington, DC 133091, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    11. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    12. Shenan Wu & Barry K. Goodwin & Keith Coble, 2020. "Moral hazard and subsidized crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 131-142, January.
    13. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    14. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    15. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
    16. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    19. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
    20. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.

    More about this item

    Keywords

    Agribusiness; Agricultural Finance; Crop Production/Industries; Financial Economics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.