IDEAS home Printed from https://ideas.repec.org/p/ags/aaea11/103635.html
   My bibliography  Save this paper

Estimating Crop Rotations as Dynamic Cycles using Field Data

Author

Listed:
  • MacEwan, Duncan
  • Howitt, Richard E.

Abstract

Crop rotation systems are an important part of agricultural production for managing pests, diseases, and soil fertility. Recent interest in sustainable agriculture focuses on low input-use practices which require knowledge of the underlying dynamics of production and rotation systems. Polices to limit chemical application depending on proximity to waterways and flood management require field-level data and analysis. Additionally, supply elasticity estimates based on crop production as independent activities omit the dynamic effects of a cyclical rotation. We estimate a dynamic programming model of crop rotation which incorporates yield and cost inter-temporal effects in addition to field-specific factors including salinity and soil quality. Using an Optimal Matching algorithm from the Bioinformatics literature we determine empirically observed rotations using a geo-referenced panel dataset of 14,000 fields over 13 years. We estimate the production parameters which satisfy the Euler Equations of the field-level rotation problem and solve an empirically observed four-crop rotation.

Suggested Citation

  • MacEwan, Duncan & Howitt, Richard E., 2011. "Estimating Crop Rotations as Dynamic Cycles using Field Data," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103635, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea11:103635
    DOI: 10.22004/ag.econ.103635
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/103635/files/MacEwan_Howitt_AAEA_2011-1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.103635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Talaat El-Nazer & Bruce A. McCarl, 1986. "The Choice of Crop Rotation: A Modeling Approach and Case Study," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 127-136.
    2. JunJie Wu & Richard M. Adams & Catherine L. Kling & Katsuya Tanaka, 2004. "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 26-41.
    3. Doole, Graeme J., 2009. "A Practical Algorithm for Multiple-Phase Control Systems in Agricultural and Natural Resource Economics," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-21, April.
    4. Christian Brzinsky-Fay & Ulrich Kohler & Magdalena Luniak, 2006. "Sequence analysis with Stata," Stata Journal, StataCorp LP, vol. 6(4), pages 435-460, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brewin, D. & Sakulanda, H., 2018. "Optimal Rotations with Considerations for Corn in Southern Manitoba," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277282, International Association of Agricultural Economists.
    2. Zhang, Wendong & Irwin, Elena G., 2013. "From Farmers' Management Decisions to Watershed Water Quality: A Spatial Economic Model of Land Management Choices," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150729, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacEwan, Duncan & Howitt, Richard E., 2011. "An Empirical Model of Crop Rotations," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100581, Australian Agricultural and Resource Economics Society.
    2. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    3. Amon-Armah, Frederick & Yiridoe, Emmanuel K. & Hebb, Dale & Jamieson, Rob, 2013. "Nitrogen abatement cost comparison for cropping systems under alternative management choices," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149915, Agricultural and Applied Economics Association.
    4. Daniel C. Monchuk & John A. Miranowski & Dermot J. Hayes & Bruce A. Babcock, 2007. "An Analysis of Regional Economic Growth in the U.S. Midwest," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(1), pages 17-39.
    5. David A. Hennessy, 2006. "On Monoculture and the Structure of Crop Rotations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 900-914.
    6. Manning, Dale & Rad, Mani Rouhi & Ogle, Stephen, 2022. "Inferring the Supply of GHG Abatement from Agricultural Lands," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322539, Agricultural and Applied Economics Association.
    7. Júlia Mikolai & Hill Kulu, 2019. "Union dissolution and housing trajectories in Britain," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(7), pages 161-196.
    8. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    9. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    10. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
    12. Babette Bühler & Katja Möhring & Andreas P. Weiland, 2022. "Assessing dissimilarity of employment history information from survey and administrative data using sequence analysis techniques," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4747-4774, December.
    13. Thang, Tran Cong & Burton, Michael P. & Brennan, Donna C., 2009. "Optimal replanting and cutting rule for coffee farmers in Vietnam," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47638, Australian Agricultural and Resource Economics Society.
    14. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    15. Barraquand, F. & Martinet, V., 2011. "Biological conservation in dynamic agricultural landscapes: Effectiveness of public policies and trade-offs with agricultural production," Ecological Economics, Elsevier, vol. 70(5), pages 910-920, March.
    16. Langena, Nina & Klink, Jeanette & Hartmann, Monika, 2013. "Individualized or non-individualized IDM: What elicits consumer preferences best?," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150637, Agricultural and Applied Economics Association.
    17. Zhang, Wei, 2015. "Costs of a Practice-Based Air Quality Regulation: Dairy Farms in the San Joaquin Valley," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205304, Agricultural and Applied Economics Association.
    18. Basak Bayramoglu & Raja CHAKIR & Anna LUNGARSKA, 2016. "Land Use and Freshwater Ecosystems in France," EcoMod2016 9420, EcoMod.
    19. David A Keiser & Joseph S Shapiro, 2019. "Consequences of the Clean Water Act and the Demand for Water Quality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 349-396.
    20. Szabó, Lajos Tamás, 2022. "A közfoglalkoztatottak jellemzői [The characteristics of public workers]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1114-1156.

    More about this item

    Keywords

    Crop Production/Industries; Production Economics; Research Methods/ Statistical Methods;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea11:103635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.