IDEAS home Printed from https://ideas.repec.org/p/ags/aaea13/149915.html
   My bibliography  Save this paper

Nitrogen abatement cost comparison for cropping systems under alternative management choices

Author

Listed:
  • Amon-Armah, Frederick
  • Yiridoe, Emmanuel K.
  • Hebb, Dale
  • Jamieson, Rob

Abstract

There is a need for cost-effective methods to reduce nitrogen pollution from agriculture. Marginal abatement cost (MAC) curves for nitrate-nitrogen pollution in an agricultural watershed are evaluated using estimated crop yield and nitrate pollution production functions for alternative cropping systems. The cropping systems considered in this study included i) two grain corn-based cropping systems; ii) two potato-based cropping systems; and iii) a vegetable-horticulture system, managed under conventional tillage (CT) and no-till (NT). The cost-effective potato-based cropping system which met the Health Canada maximum contaminant limit (MCL) for nitrate-N, with the highest gross margin ($6973 ha-1) and lowest abatement cost ($395 ha-1) was a potato-barley-winter wheat-potato-corn rotation under no-till (PBWPC-NT). Similarly, among the vegetable-horticulture cropping systems, potato-winter wheat-carrot-corn rotation under CT (PWRC-CT) generated the highest gross margin and lowest on-farm abatement cost ($680 ha-1). As the Health Canada allowable limit on nitrate-N pollution was relaxed (i.e., less stringent), the cost-effective corn-based cropping system shifted from a rotation involving corn-corn-alfalfa-alfalfa-alfalfa under CT to corn-corn-corn-alfalfa-alfalfa under NT.

Suggested Citation

  • Amon-Armah, Frederick & Yiridoe, Emmanuel K. & Hebb, Dale & Jamieson, Rob, 2013. "Nitrogen abatement cost comparison for cropping systems under alternative management choices," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149915, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea13:149915
    DOI: 10.22004/ag.econ.149915
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/149915/files/Nitrogen%20Abatement%20Cost%20_YIRIDOE%20%20_May%2030%202013.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.149915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Swinton, Scott M. & Clark, David S., 1994. "Farm-Level Evaluation Of Alternative Policy Approaches To Reduce Nitrate Leaching From Midwest Agriculture," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 23(1), pages 1-9, April.
    2. Talaat El-Nazer & Bruce A. McCarl, 1986. "The Choice of Crop Rotation: A Modeling Approach and Case Study," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 127-136.
    3. Kevin Parris, 2011. "Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 27(1), pages 33-52, March.
    4. Yiridoe, Emmanuel K. & Weersink, Alfons, 1998. "Marginal Abatement Costs Of Reducing Groundwater-N Pollution With Intensive And Extensive Farm Management Choices," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 27(2), pages 1-17, October.
    5. Stoorvogel, J. J. & Antle, J. M. & Crissman, C. C. & Bowen, W., 2004. "The tradeoff analysis model: integrated bio-physical and economic modeling of agricultural production systems," Agricultural Systems, Elsevier, vol. 80(1), pages 43-66, April.
    6. Bonham, John G. & Bosch, Darrell J. & Pease, James W., 2006. "Cost-Effectiveness of Nutrient Management and Buffers: Comparisons of Two Spatial Scenarios," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 38(1), pages 1-16, April.
    7. McKitrick, Ross, 1999. "A Derivation of the Marginal Abatement Cost Curve," Journal of Environmental Economics and Management, Elsevier, vol. 37(3), pages 306-314, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    2. Johansson, Robert C. & Gowda, Prasanna H. & Mulla, David J. & Dalzell, Brent J., 2004. "Metamodelling phosphorus best management practices for policy use: a frontier approach," Agricultural Economics, Blackwell, vol. 30(1), pages 63-74, January.
    3. Yunfei An & Xunpeng Shi & Qunwei Wang & Jian Yu & Dequn Zhou & Xiaoyong Zhou, 2023. "China's manufacturing firms' willingness to pay for carbon abatement: A cost perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5477-5486, December.
    4. Peck, Dannele E. & Adams, Richard M., 2011. "A reply to ‘Multiyear versus single-year drought: a comment on Peck and Adams’," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(3), pages 1-4, September.
    5. Turpin, Nadine & Bontems, Philippe & Rotillon, Gilles, 2004. "Lutte contre la pollution diffuse sur un bassin d’élevage : comparaison d’instruments de régulation en présence d’asymétrie d’information," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 72.
    6. Vayssières, Jonathan & Vigne, Mathieu & Alary, Véronique & Lecomte, Philippe, 2011. "Integrated participatory modelling of actual farms to support policy making on sustainable intensification," Agricultural Systems, Elsevier, vol. 104(2), pages 146-161, February.
    7. Dyar, Julie A. & Wagner, Jeffrey, 2003. "Uncertainty and species recovery program design," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 505-522, March.
    8. Chu Wei, 2022. "Economic loss and environmental gain from regulation: examining the two-fold effect using data from Chinese cities," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 423-434, December.
    9. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    10. Friesen, Lana & Gangadharan, Lata & Khezr, Peyman & MacKenzie, Ian A., 2022. "Mind your Ps and Qs! Variable allowance supply in the US Regional Greenhouse Gas Initiative," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    11. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    12. Annou, Mamane Malam & Wailes, Eric J. & Thomsen, Michael R., 2005. "A Dynamic Decision Model of Technology Adoption under Uncertainty: Case of Herbicide-Resistant Rice," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 37(1), pages 1-12, April.
    13. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    14. Boxall, Peter C. & Weber, Marian & Perger, Orsolya & Cutlac, Marius & Samarawickrema, Antony, 2008. "Results from the Farm Behaviour Component of the Integrated Economic-Hydrologic Model for the Watershed Evaluation of Beneficial Management Practices Program," Project Report Series 116268, University of Alberta, Department of Resource Economics and Environmental Sociology.
    15. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    16. David A. Keiser & Joseph S. Shapiro, 2019. "US Water Pollution Regulation over the Past Half Century: Burning Waters to Crystal Springs?," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 51-75, Fall.
    17. Thang, Tran Cong & Burton, Michael P. & Brennan, Donna C., 2009. "Optimal replanting and cutting rule for coffee farmers in Vietnam," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47638, Australian Agricultural and Resource Economics Society.
    18. Alfandari, Laurent & Plateau, Agnès & Scheplerc, Xavier, 2014. "A Branch-and-Price-and-Cut Approach for Sustainable Crop Rotation Planning," ESSEC Working Papers WP1408, ESSEC Research Center, ESSEC Business School.
    19. Ekaterina Nikitina, 2019. "Opportunity Cost of Environmental Conservation in the Presence of Externalities: Application to the Farmed and Wild Salmon Trade-Off in Norway," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 679-696, June.
    20. Alfandari, Laurent & Plateau, Agnès & Schepler, Xavier, 2015. "A branch-and-price-and-cut approach for sustainable crop rotation planning," European Journal of Operational Research, Elsevier, vol. 241(3), pages 872-879.

    More about this item

    Keywords

    Environmental Economics and Policy; Production Economics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea13:149915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.