IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v50y2006i1p1-15.html
   My bibliography  Save this article

Modelling the supply of ecosystem services from agriculture: a minimum‐data approach

Author

Listed:
  • John M. Antle
  • Roberto O. Valdivia

Abstract

We argue that to support agriculture–environmental policy decision making, stakeholders need ‘quantitative back‐of‐the‐envelope’ analysis that is timely and sufficiently accurate to make informed decisions. We apply this concept to the analysis of the supply of ecosystem services from agriculture. We present a spatially explicit production model and show how it can be used to derive the supply of ecosystem services in a region. This model shows that the supply of ecosystem services can be derived from the spatial distribution of opportunity cost of providing those services. We then show how this conceptual model can be used to develop a minimum‐data (MD) approach to the analysis of the supply of ecosystem services from agriculture that can be implemented with the kinds of secondary data that are available in most parts of the world. We apply the MD approach to simulate the supply of carbon that could be sequestered in agricultural soils in the dryland grain‐producing region of Montana. We find that the supply curve derived from the MD approach can approximate the supply curve obtained from a more elaborate model based on site‐specific data, and can do so with sufficient accuracy for policy analysis.

Suggested Citation

  • John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
  • Handle: RePEc:bla:ajarec:v:50:y:2006:i:1:p:1-15
    DOI: 10.1111/j.1467-8489.2006.00315.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-8489.2006.00315.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-8489.2006.00315.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Just, Richard E & Antle, John M, 1990. "Interactions between Agricultural and Environmental Policies: A Conceptual Framework," American Economic Review, American Economic Association, vol. 80(2), pages 197-202, May.
    2. Jeffrey H. Dorfman & Catherine L. Kling & Richard J. Sexton, 1990. "Confidence Intervals for Elasticities and Flexibilities: Reevaluating the Ratios of Normals Case," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 1006-1017.
    3. John M. Antle & Susan M. Capalbo, 2001. "Econometric-Process Models for Integrated Assessment of Agricultural Production Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 389-401.
    4. JunJie Wu & Richard M. Adams & Catherine L. Kling & Katsuya Tanaka, 2004. "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," American Journal of Agricultural Economics, John Wiley & Sons, vol. 86(1), pages 26-41, February.
    5. GR Pautsch & LA Kurkalova & BA Babcock & CL Kling, 2001. "The Efficiency Of Sequestering Carbon In Agricultural Soils," Contemporary Economic Policy, Western Economic Association International, vol. 19(2), pages 123-134, April.
    6. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    7. Feng, Hongli & Kling, Catherine L. & Gassman, Philip W., 2004. "Carbon Sequestration, Co-Benefits, and Conservation Programs," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 19(3), pages 1-6.
    8. Dorfman, Jeffrey H. & Kling, Catherine L. & Sexton, Richard J., 1990. "Confidence Intervals for Elasticities and Flexibilities," 1990 Annual meeting, August 5-8, Vancouver, Canada 270866, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. JunJie Wu & Richard M. Adams & Catherine L. Kling & Katsuya Tanaka, 2004. "From Microlevel Decisions to Landscape Changes: An Assessment of Agricultural Conservation Policies," American Journal of Agricultural Economics, John Wiley & Sons, vol. 86(1), pages 26-41, February.
    10. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    11. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Immerzeel, Walter & Stoorvogel, Jetse & Antle, John, 2008. "Can payments for ecosystem services secure the water tower of Tibet," Agricultural Systems, Elsevier, vol. 96(1-3), pages 52-63, March.
    2. Antle, John M. & Diagana, Bocar & Stoorvogel, Jetse J. & Valdivia, Roberto O., 2010. "Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-17.
    3. Manning, Dale & Rad, Mani Rouhi & Ogle, Stephen, 2022. "Inferring the Supply of GHG Abatement from Agricultural Lands," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322539, Agricultural and Applied Economics Association.
    4. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.
    5. Fezzi, Carlo & Bateman, Ian J., 2009. "Structural Agricultural Land Use Modelling," 2009 Conference, August 16-22, 2009, Beijing, China 51423, International Association of Agricultural Economists.
    6. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    7. Langpap, Christian & Hascic, Ivan & Wu, JunJie, 2006. "Predicting Watershed Ecosystems Through Targeted Local Land Use Policies," 2006 Annual meeting, July 23-26, Long Beach, CA 21262, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Oladipo S. Obembe & Nathan P. Hendricks, 2022. "Marginal cost of carbon sequestration through forest afforestation of agricultural land in the southeastern United States," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 59-73, November.
    9. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    11. Ji, Yongjie & Rabotyagov, sergey & Valcu-Lisman, Adriana, 2015. "Estimating Adoption of Cover Crops Using Preferences Revealed by a Dynamic Crop Choice Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205799, Agricultural and Applied Economics Association.
    12. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    13. Christian Langpap & JunJie Wu, 2008. "Predicting the Effect of Land‐Use Policies on Wildlife Habitat Abundance," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(2), pages 195-217, June.
    14. Hediger, Werner, 2009. "The non-permanence of optimal soil carbon sequestration," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51057, Agricultural Economics Society.
    15. Scott, Paul, 2014. "Dynamic Discrete Choice Estimation of Agricultural Land Use," TSE Working Papers 14-526, Toulouse School of Economics (TSE).
    16. Man Li & JunJie Wu & Xiangzheng Deng, 2013. "Identifying Drivers of Land Use Change in China: A Spatial Multinomial Logit Model Analysis," Land Economics, University of Wisconsin Press, vol. 89(4), pages 632-654.
    17. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    18. Mooney, Sian & Antle, John M. & Capalbo, Susan Marie & Paustian, Keith H., 2003. "Incorporating Uncertainty In Integrated Assessment Modeling," 2003 Annual meeting, July 27-30, Montreal, Canada 22225, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Uwe A. Schneider & Michael Obersteiner & Erwin Schmid & Bruce A. McCarl, 2007. "Agricultural adaptation to climate policies under technical change," Working Papers FNU-133, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2008.
    20. Mu, Jianhong E. & McCarl, Bruce A. & Sleeter, Benjamin & Abatzoglou, John T. & Zhang, Hongliang, 2018. "Adaptation with climate uncertainty: An examination of agricultural land use in the United States," Land Use Policy, Elsevier, vol. 77(C), pages 392-401.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:50:y:2006:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.