IDEAS home Printed from https://ideas.repec.org/p/aah/create/2015-40.html
   My bibliography  Save this paper

Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach

Author

Listed:
  • Lorenzo Boldrini

    (Aarhus University and CREATES)

Abstract

In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based on popular semi-empirical methods present in the literature and on zero-dimensional energy balance models. We show that some of the models developed in the literature on semi-empirical models can be analysed within this framework. We use the sea-level data reconstruction developed in Church and White (2011) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature scenarios of the IPCC fourth assessment report. Furthermore, we propose a bootstrap procedure to compute confidence intervals for the projections, based on the method introduced in Rodriguez and Ruiz (2009).

Suggested Citation

  • Lorenzo Boldrini, 2015. "Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach," CREATES Research Papers 2015-40, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2015-40
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/15/rp15_40.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    2. S. J. Koopman & J. Durbin, 2000. "Fast Filtering and Smoothing for Multivariate State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(3), pages 281-296, May.
    3. David Anthoff & Robert Nicholls & Richard Tol, 2010. "The economic impact of substantial sea-level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 321-335, April.
    4. Bergstrom, A.R., 1997. "Gaussian Estimation of Mixed-Order Continuous-Time Dynamic Models with Unobservable Stochastic Trends from Mixed Stock and Flow Data," Econometric Theory, Cambridge University Press, vol. 13(4), pages 467-505, February.
    5. Felix Pretis, 2015. "Econometric Models of Climate Systems: The Equivalence of Two-Component Energy Balance Models and Cointegrated VARs," Economics Series Working Papers 750, University of Oxford, Department of Economics.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berger, Tino & Kempa, Bernd, 2012. "Taylor rules and the Canadian–US equilibrium exchange rate," Journal of International Money and Finance, Elsevier, vol. 31(5), pages 1060-1075.
    2. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    3. Christian Bayer & Benjamin Born & Ralph Luetticke, 2024. "Shocks, Frictions, and Inequality in US Business Cycles," American Economic Review, American Economic Association, vol. 114(5), pages 1211-1247, May.
    4. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    5. Yoshida, Wataru & Hirose, Kei, 2024. "Fast same-step forecast in SUTSE model and its theoretical properties," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    6. Algaba, Andres & Borms, Samuel & Boudt, Kris & Verbeken, Brecht, 2023. "Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 266-278.
    7. M. Dossche & G. Everaert, 2005. "Measuring inflation persistence: a structural time series approach," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/340, Ghent University, Faculty of Economics and Business Administration.
    8. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2008. "A Monthly Indicator of the Euro Area GDP," Economics Working Papers ECO2008/32, European University Institute.
    9. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    10. repec:spo:wpmain:info:hdl:2441/784ilbkihi9tkblnh7q2514823 is not listed on IDEAS
    11. Borus Jungbacker & Siem Jan Koopman & Michel van der Wel, 0000. "Dynamic Factor Models with Smooth Loadings for Analyzing the Term Structure of Interest Rates," Tinbergen Institute Discussion Papers 09-041/4, Tinbergen Institute, revised 17 Sep 2010.
    12. Berger, Tino & Pozzi, Lorenzo, 2013. "Measuring time-varying financial market integration: An unobserved components approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 463-473.
    13. Francisco Blasques & Siem Jan Koopman & Max Mallee, 2014. "Low Frequency and Weighted Likelihood Solutions for Mixed Frequency Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-105/III, Tinbergen Institute.
    14. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
    15. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    16. Strickland, Chris M. & Turner, Ian. W. & Denham, Robert & Mengersen, Kerrie L., 2009. "Efficient Bayesian estimation of multivariate state space models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4116-4125, October.
    17. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
    18. Borus Jungbacker & Siem Jan Koopman & Michel Wel, 2014. "Smooth Dynamic Factor Analysis With Application To The Us Term Structure Of Interest Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 65-90, January.
    19. Rodríguez, Alejandro & Ruiz, Esther, 2012. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
    20. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    21. Koopman, Siem Jan & van der Wel, Michel, 2013. "Forecasting the US term structure of interest rates using a macroeconomic smooth dynamic factor model," International Journal of Forecasting, Elsevier, vol. 29(4), pages 676-694.

    More about this item

    Keywords

    energy balance model; semi-empirical model; state-space system; Kalman filter; forecasting; temperature; sea level; bootstrap JEL classification: C32;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2015-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.