IDEAS home Printed from https://ideas.repec.org/p/aah/aarhec/2020-17.html
   My bibliography  Save this paper

The Optimal Extraction of Non-Renewable Resources under Hyperbolic Discounting

Author

Listed:
  • Anna M. Dugan

    (University of Graz, Wegener Center for Climate and Global Change and FWF Doctoral Program Climate Change)

  • Timo Trimborn

    (Department of Economics and Business Economics, Aarhus University)

Abstract

In this paper, we investigate the effects of a declining social discount rate (SDR) on the optimal extraction of non-renewable resources and economic growth. For this purpose, we introduce time-consistent hyperbolic utility discounting into models of resource extraction. First, we investigate a small model of pure resource extraction holding constant the magnitude of discounting for hyperbolic and exponential discounting. We show that resource use is more conservative under hyperbolic discounting resulting in a permanently higher resource stock. Second, we introduce hyperbolic discounting into the seminal Dasgupta-Heal-Solow-Stiglitz (DHSS) model and derive analytically that positive long-run consumption growth requires a lower rate of technological progress under hyperbolic discounting. We show numerically that resource use is more conservative under hyperbolic discounting in the medium- and long-run.

Suggested Citation

  • Anna M. Dugan & Timo Trimborn, 2020. "The Optimal Extraction of Non-Renewable Resources under Hyperbolic Discounting," Economics Working Papers 2020-17, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:aarhec:2020-17
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/afn/wp/20/wp20_17.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strulik, Holger & Trimborn, Timo, 2018. "Hyperbolic discounting can be good for your health," Journal of Economic Psychology, Elsevier, vol. 69(C), pages 44-57.
    2. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    3. Martin L. Weitzman, 2001. "Gamma Discounting," American Economic Review, American Economic Association, vol. 91(1), pages 260-271, March.
    4. Trimborn, Timo & Koch, Karl-Josef & Steger, Thomas M., 2008. "Multidimensional Transitional Dynamics: A Simple Numerical Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 12(3), pages 301-319, June.
    5. Asheim, Geir B. & Buchholz, Wolfgang & Hartwick, John M. & Mitra, Tapan & Withagen, Cees, 2007. "Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 213-229, March.
    6. Kenneth J. Arrow & Maureen L. Cropper & Christian Gollier & Ben Groom & Geoffrey M. Heal & Richard G. Newell & William D. Nordhaus & Robert S. Pindyck & William A. Pizer & Paul R. Portney & Thomas Ste, 2014. "Editor's Choice Should Governments Use a Declining Discount Rate in Project Analysis?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 145-163.
    7. John Hassler & Per Krusell, 2012. "Economics And Climate Change: Integrated Assessment In A Multi-Region World," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 974-1000, October.
    8. H. Stuart Burness, 1976. "A Note on Consistent Naive Intertemporal Decision Making and an Application to the Case of Uncertain Lifetime," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 43(3), pages 547-549.
    9. Nicolas Drouhin, 2009. "Hyperbolic discounting may be time consistent," Economics Bulletin, AccessEcon, vol. 29(4), pages 2549-2555.
    10. Trimborn, Timo, 2018. "On the analysis of endogenous growth models with a balanced growth path," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 40-50.
    11. Trimborn, Timo, 2013. "Solution of continuous-time dynamic models with inequality constraints," Economics Letters, Elsevier, vol. 119(3), pages 299-301.
    12. Karp, Larry, 2005. "Global warming and hyperbolic discounting," Journal of Public Economics, Elsevier, vol. 89(2-3), pages 261-282, February.
    13. Pezzey, John C.V., 2004. "Exact measures of income in a hyperbolic economy," Environment and Development Economics, Cambridge University Press, vol. 9(4), pages 473-484, August.
    14. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    15. Mitra, Tapan, 1983. "Limits on Population Growth under Exhaustible Resource Constraints," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 155-168, February.
    16. Maddison, Angus, 1987. "Growth and Slowdown in Advanced Capitalist Economies: Techniques of Quantitative Assessment," Journal of Economic Literature, American Economic Association, vol. 25(2), pages 649-698, June.
    17. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    18. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    19. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    20. Havranek, Tomas & Horvath, Roman & Irsova, Zuzana & Rusnak, Marek, 2015. "Cross-country heterogeneity in intertemporal substitution," Journal of International Economics, Elsevier, vol. 96(1), pages 100-118.
    21. Drouhin, Nicolas, 2020. "Non-stationary additive utility and time consistency," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 1-14.
    22. Raj Chetty, 2006. "A New Method of Estimating Risk Aversion," American Economic Review, American Economic Association, vol. 96(5), pages 1821-1834, December.
    23. Christian Gollier, 2012. "Pricing the Planet's Future: The Economics of Discounting in an Uncertain World," Economics Books, Princeton University Press, edition 1, volume 1, number 9894.
    24. Martin L. Weitzman, 2007. "Subjective Expectations and Asset-Return Puzzles," American Economic Review, American Economic Association, vol. 97(4), pages 1102-1130, September.
    25. Weitzman, Martin L., 1998. "Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 201-208, November.
    26. Sterner, Thomas & Tol, Richard S. J. & Weitzman, Martin L. & Pizer, William A. & Portney, Paul R. & Arrow, Kenneth J. & Cropper, Maureen L. & Gollier, Christian & Groom, Ben & Heal, Geoffrey M. & Newe, 2014. "Should Governments Use a Declining Discount Rate in Project Analysis?," Scholarly Articles 33373349, Harvard University Department of Economics.
    27. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    28. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Strulik, 2021. "Hyperbolic discounting and the time‐consistent solution of three canonical environmental problems," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 23(3), pages 462-486, June.
    2. Frederick Ploeg & Armon Rezai, 2019. "Simple Rules for Climate Policy and Integrated Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 77-108, January.
    3. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    4. Asheim, Geir B. & Hartwick, John M. & Mitra, Tapan, 2021. "Investment rules and time invariance under population growth," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    5. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    6. Quaas, Martin F. & Bröcker, Johannes, 2016. "Substitutability and the social cost of carbon in a solvable growth model with irreversible climate change," Economics Working Papers 2016-09, Christian-Albrechts-University of Kiel, Department of Economics.
    7. Asheim, Geir B. & Hartwick, John M. & Yamaguchi, Rintaro, 2023. "Sustainable per capita consumption under population growth," Resource and Energy Economics, Elsevier, vol. 73(C).
    8. Nick Hanley & Louis Dupuy & Eoin McLaughlin, 2015. "Genuine Savings And Sustainability," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 779-806, September.
    9. Bazhanov, Andrei, 2011. "Зависимость Долгосрочного Роста Ресурсной Экономики От Начального Состояния: Сравнение Моделей На Примере Российской Нефтедобычи [The dependence of the potential sustainability of a resource econom," MPRA Paper 35888, University Library of Munich, Germany.
    10. Hänsel, Martin C. & Quaas, Martin F., 2018. "Intertemporal Distribution, Sufficiency, and the Social Cost of Carbon," Ecological Economics, Elsevier, vol. 146(C), pages 520-535.
    11. Bazhanov, Andrei, 2008. "Sustainable growth in a resource-based economy: the extraction-saving relationship," MPRA Paper 12350, University Library of Munich, Germany.
    12. Asheim, Geir B. & Buchholz, Wolfgang & Hartwick, John M. & Mitra, Tapan & Withagen, Cees, 2007. "Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 213-229, March.
    13. Freeman, Mark C. & Groom, Ben, 2016. "How certain are we about the certainty-equivalent long term social discount rate?," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 152-168.
    14. Freeman, Mark C. & Groom, Ben & Panopoulou, Ekaterini & Pantelidis, Theologos, 2015. "Declining discount rates and the Fisher Effect: Inflated past, discounted future?," Journal of Environmental Economics and Management, Elsevier, vol. 73(C), pages 32-49.
    15. Eric Fesselmeyer & Haoming Liu & Alberto Salvo, 2022. "Declining discount rates in Singapore's market for privately developed apartments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 330-350, March.
    16. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    17. Lanlan Luo & Shou Chen & Ziran Zou, 2020. "Determining the Generalized Discount Rate for Risky Projects," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 143-158, September.
    18. Bazhanov, A., 2011. "The Dependence of the Potential Sustainability of a Resource Economy on the Initial State: a Comparison of Models Using the Example of Russian Oil Extraction," Journal of the New Economic Association, New Economic Association, issue 12, pages 77-100.
    19. Cees A. Withagen, 2018. "The Social Cost of Carbon and the Ramsey Rule," CESifo Working Paper Series 7359, CESifo.
    20. Bazhanov, Andrei V., 2013. "Constant-utility paths in a resource-based economy," Resource and Energy Economics, Elsevier, vol. 35(3), pages 342-355.

    More about this item

    Keywords

    Hyperbolic discounting; social discount rate; non-renewable resource extraction; Dasgupta-Heal-Solow-Stiglitz model;
    All these keywords.

    JEL classification:

    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • H30 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2020-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.