IDEAS home Printed from https://ideas.repec.org/f/pka258.html
   My authors  Follow this author

Christian Kahl

Personal Details

First Name:Christian
Middle Name:
Last Name:Kahl
Suffix:
RePEc Short-ID:pka258
http://www.math.uni-wuppertal.de/~kahl

Affiliation

Chair of Applied Mathematics / Numerical Analysis

http://www.math.uni-wuppertal.de/org/Num/
Wuppertal

Research output

as
Jump to: Working papers Articles

Working papers

  1. Eicker, Stefan & Spies, Thorsten & Kahl, Christian, 2007. "Softwarevisualisierung im Kontext serviceorientierter Architekturen," ICB Research Reports 13, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
  2. Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.
  3. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.

Articles

  1. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
  2. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.

    Cited by:

    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Kilin, Fiodar, 2006. "Accelerating the calibration of stochastic volatility models," MPRA Paper 2975, University Library of Munich, Germany, revised 22 Apr 2007.
    3. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    4. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    5. Gong, Xiaoli & Zhuang, Xintian, 2017. "Pricing foreign equity option under stochastic volatility tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 83-93.
    6. Stavros J. Sioutis, 2017. "Calibration and Filtering of Exponential L\'evy Option Pricing Models," Papers 1705.04780, arXiv.org.

  2. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.

    Cited by:

    1. Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.
    2. Kilin, Fiodar, 2006. "Accelerating the calibration of stochastic volatility models," MPRA Paper 2975, University Library of Munich, Germany, revised 22 Apr 2007.
    3. Flavio Angelini & Stefano Herzel, 2015. "Evaluating discrete dynamic strategies in affine models," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 313-326, February.
    4. Jean-Pierre Fouque & Matthew Lorig, 2010. "A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model," Papers 1007.4366, arXiv.org, revised Apr 2012.
    5. Lech A. Grzelak & Cornelis W. Oosterlee & Sacha Van Weeren, 2012. "Extension of stochastic volatility equity models with the Hull--White interest rate process," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 89-105, July.
    6. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Kiesel, Rüdiger & Rahe, Florentin, 2017. "Option pricing under time-varying risk-aversion with applications to risk forecasting," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 120-138.
    8. Giacomo Bormetti & Valentina Cazzola & Guido Montagna & Oreste Nicrosini, 2008. "Probability distribution of returns in the exponential Ornstein-Uhlenbeck model," Papers 0805.0540, arXiv.org, revised Oct 2008.

Articles

  1. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.

    Cited by:

    1. Christopher Beveridge & Mark Joshi, 2011. "Monte Carlo Bounds for Game Options Including Convertible Bonds," Management Science, INFORMS, vol. 57(5), pages 960-974, May.
    2. Masaaki Fujii & Akihiko Takahashi, 2012. "Perturbative Expansion of FBSDE in an Incomplete Market with Stochastic Volatility," CARF F-Series CARF-F-270, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jun 2012.
    3. Mordecai Avriel & Jens Hilscher & Alon Raviv, 2012. "Inflation Derivatives Under Inflation Target Regimes," Working Papers 43, Brandeis University, Department of Economics and International Businesss School.
    4. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    5. Alexander Lipton & Andrey Gal & Andris Lasis, 2013. "Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results," Papers 1312.5693, arXiv.org.
    6. Denis Belomestny & Stanley Matthew & John Schoenmakers, 2007. "A stochastic volatility Libor model and its robust calibration," SFB 649 Discussion Papers SFB649DP2007-067, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Liu, Peng & Tang, Ke, 2011. "The stochastic behavior of commodity prices with heteroskedasticity in the convenience yield," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 211-224, March.
    8. Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.
    9. Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
    10. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    11. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    12. Dell'Era, Mario, 2010. "Geometrical Considerations on Heston's Market Model," MPRA Paper 21523, University Library of Munich, Germany.
    13. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised Dec 2017.
    14. Dell'Era, Mario, 2010. "Vanilla Option Pricing on Stochastic Volatility market models," MPRA Paper 25645, University Library of Munich, Germany.
    15. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    16. Masaaki Fujii & Akihiko Takahashi, 2012. "Perturbative Expansion of FBSDE in an Incomplete Market with Stochastic Volatility," Papers 1202.0608, arXiv.org, revised Sep 2012.
    17. Nikolaos Halidias & Ioannis Stamatiou, 2015. "Approximating explicitly the mean reverting CEV process," Papers 1502.03018, arXiv.org, revised May 2015.
    18. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1.
    19. Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
    20. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
    21. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    22. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.
    23. Andreas Neuenkirch & Lukasz Szpruch, 2012. "First order strong approximations of scalar SDEs with values in a domain," Papers 1209.0390, arXiv.org.
    24. Dell'Era, Mario, 2010. "Geometrical Approximation method and stochastic volatility market models," MPRA Paper 22568, University Library of Munich, Germany.
    25. Masaaki Fujii & Akihiko Takahashi, 2012. "Perturbative Expansion of FBSDE in an Incomplete Market with Stochastic Volatility," CIRJE F-Series CIRJE-F-840, CIRJE, Faculty of Economics, University of Tokyo.

  2. Kahl Christian & Schurz Henri, 2006. "Balanced Milstein Methods for Ordinary SDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 143-170, April.

    Cited by:

    1. Tan, Jianguo & Men, Weiwei & Pei, Yongzhen & Guo, Yongfeng, 2017. "Construction of positivity preserving numerical method for stochastic age-dependent population equations," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 57-64.
    2. Eckhard Platen & Renata Rendek, 2009. "Exact Scenario Simulation for Selected Multi-dimensional Stochastic Processes," Research Paper Series 259, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Yin, Zhengwei & Gan, Siqing, 2015. "An error corrected Euler–Maruyama method for stiff stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 630-641.
    4. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    5. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    6. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23.
    7. Sun, Xianming & Gan, Siqing & Vanmaele, Michèle, 2015. "Analytical approximation for distorted expectations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 246-252.
    8. Nikolaos Halidias, 2016. "On construction of boundary preserving numerical schemes," Papers 1601.07864, arXiv.org, revised Feb 2016.
    9. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1.
    10. Xianming Sun & Siqing Gan, 2014. "An Efficient Semi-Analytical Simulation for the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 433-445, April.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-FIN: Finance (1) 2006-08-12

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Christian Kahl should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.