IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.02832.html
   My bibliography  Save this paper

Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options

Author

Listed:
  • Christian Bayer
  • Chiheb Ben Hammouda
  • Antonis Papapantoleon
  • Michael Samet
  • Ra'ul Tempone

Abstract

Efficiently pricing multi-asset options poses a significant challenge in quantitative finance. The Monte Carlo (MC) method remains the prevalent choice for pricing engines; however, its slow convergence rate impedes its practical application. Fourier methods leverage the knowledge of the characteristic function to accurately and rapidly value options with up to two assets. Nevertheless, they face hurdles in the high-dimensional settings due to the tensor product (TP) structure of commonly employed quadrature techniques. This work advocates using the randomized quasi-MC (RQMC) quadrature to improve the scalability of Fourier methods with high dimensions. The RQMC technique benefits from the smoothness of the integrand and alleviates the curse of dimensionality while providing practical error estimates. Nonetheless, the applicability of RQMC on the unbounded domain, $\mathbb{R}^d$, requires a domain transformation to $[0,1]^d$, which may result in singularities of the transformed integrand at the corners of the hypercube, and deteriorate the rate of convergence of RQMC. To circumvent this difficulty, we design an efficient domain transformation procedure based on the derived boundary growth conditions of the integrand. This transformation preserves the sufficient regularity of the integrand and hence improves the rate of convergence of RQMC. To validate this analysis, we demonstrate the efficiency of employing RQMC with an appropriate transformation to evaluate options in the Fourier space for various pricing models, payoffs, and dimensions. Finally, we highlight the computational advantage of applying RQMC over MC or TP in the Fourier domain, and over MC in the physical domain for options with up to 15 assets.

Suggested Citation

  • Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Michael Samet & Ra'ul Tempone, 2024. "Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options," Papers 2403.02832, arXiv.org.
  • Handle: RePEc:arx:papers:2403.02832
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.02832
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Christian Bayer & Markus Siebenmorgen & Raul Tempone, 2018. "Smoothing the payoff for efficient computation of Basket option prices," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 491-505, March.
    4. Longstaff, Francis A, 1995. "Option Pricing and the Martingale Restriction," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1091-1124.
    5. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    6. Christian Bayer & Chiheb Ben Hammouda & Raúl Tempone, 2020. "Hierarchical adaptive sparse grids and quasi-Monte Carlo for option pricing under the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1457-1473, September.
    7. Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.
    8. Jean-Philippe Aguilar, 2019. "Some pricing tools for the Variance Gamma model," Papers 1912.06031, arXiv.org, revised Jun 2020.
    9. Glau, Kathrin & Wunderlich, Linus, 2022. "The deep parametric PDE method and applications to option pricing," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    10. Michael Kastoryano & Nicola Pancotti, 2022. "A highly efficient tensor network algorithm for multi-asset Fourier options pricing," Papers 2203.02804, arXiv.org.
    11. Jean-Philippe Aguilar, 2020. "Some Pricing Tools For The Variance Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(04), pages 1-35, June.
    12. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2010. "Analysis of Fourier Transform Valuation Formulas and Applications," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(3), pages 211-240.
    13. Christian Bayer & Chiheb Ben Hammouda & Raúl Tempone, 2023. "Numerical smoothing with hierarchical adaptive sparse grids and quasi-Monte Carlo methods for efficient option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 23(2), pages 209-227, February.
    14. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    2. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    3. Lee, Hangsuck & Choi, Yang Ho & Lee, Gaeun, 2022. "Multi-step barrier products and static hedging," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    4. Christian Bayer & Chiheb Ben Hammouda & Ra'ul Tempone, 2021. "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing," Papers 2111.01874, arXiv.org, revised Jun 2022.
    5. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    6. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org.
    7. repec:uts:finphd:41 is not listed on IDEAS
    8. Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
    9. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    10. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    11. Fabien Le Floc'h, 2020. "Notes on the SWIFT method based on Shannon Wavelets for Option Pricing," Papers 2005.13252, arXiv.org.
    12. Yang, Yang & Su, Wen & Zhang, Zhimin, 2019. "Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 147-155.
    13. Samuel Drapeau & Michael Kupper & Antonis Papapantoleon, 2012. "A Fourier Approach to the Computation of CV@R and Optimized Certainty Equivalents," Papers 1212.6732, arXiv.org, revised Dec 2013.
    14. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    15. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
    16. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    17. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019.
    18. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    19. Ofelia Bonesini & Giorgia Callegaro & Antoine Jacquier, 2021. "Functional quantization of rough volatility and applications to volatility derivatives," Papers 2104.04233, arXiv.org, revised Mar 2024.
    20. Damien Ackerer & Damir Filipovic & Sergio Pulido, 2017. "The Jacobi Stochastic Volatility Model," Working Papers hal-01338330, HAL.
    21. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.02832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.