IDEAS home Printed from
   My bibliography  Save this paper

Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program



Correlation matrices have many applications, particularly in marketing and financial economics. The need to forecast demand for a group of products in order to realize savings by properly managing inventories requires the use of correlation matrices. In many cases, due to paucity of data/information or dynamic nature of the problem at hand, it is not possible to obtain a complete correlation matrix. Some elements of the matrix are unknown. Several methods exist that obtain valid complete correlation matrices from incomplete correlation matrices. In view of non-unique solutions admissible to the problem of completing the correlation matrix, some authors have suggested numerical methods that provide ranges to different unknown elements. However, they are limited to very small matrices up to order 4. Our objective in this paper is to suggest a method (and provide a Fortran program) that completes a given incomplete correlation matrix of an arbitrary order. The method proposed here has an advantage over other algorithms due to its ability to present a scenario of valid correlation matrices that might be obtained from a given incomplete matrix of an arbitrary order. The analyst may choose some particular matrices, most suitable to his purpose, from among those output matrices. Further, unlike other methods, it has no restriction on the distribution of holes over the entire matrix, nor the analyst has to interactively feed elements of the matrix sequentially, which might be quite inconvenient for larger matrices. It is flexible and by merely choosing larger population size one might obtain a more exhaustive scenario of valid matrices.

Suggested Citation

  • Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:2000

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    File URL:
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    1. Raoul Pietersz & Patrick Groenen, 2004. "Rank reduction of correlation matrices by majorization," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 649-662.
    2. Igor Grubisic & Raoul Pietersz, 2005. "Efficient Rank Reduction of Correlation Matrices," Finance 0502007, University Library of Munich, Germany.
    3. Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
    4. Mishra, SK, 2004. "Optimal solution of the nearest correlation matrix problem by minimization of the maximum norm," MPRA Paper 1783, University Library of Munich, Germany.
    5. Ingram Olkin, 1981. "Range restrictions for product-moment correlation matrices," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 469-472, December.
    6. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(03), pages 267-284, September.
    7. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.

    More about this item


    Incomplete; complete; correlation matrix; valid; semi-definite; eigenvalues; Differential Evolution; global optimization; computer program; fortran; financial economics; arbitrary order;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:2000. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.