IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Optimal solution of the nearest correlation matrix problem by minimization of the maximum norm

The nearest correlation matrix problem is to find a valid (positive semidefinite) correlation matrix, R(m,m), that is nearest to a given invalid (negative semidefinite) or pseudo-correlation matrix, Q(m,m); m larger than 2. In the literature on this problem, 'nearest' is invariably defined in the sense of the least Frobenius norm. Research works of Rebonato and Jaeckel (1999), Higham (2002), Anjos et al. (2003), Grubisic and Pietersz (2004), Pietersz, and Groenen (2004), etc. use Frobenius norm explicitly or implicitly. However, it is not necessary to define 'nearest' in this conventional sense. The thrust of this paper is to define 'nearest' in the sense of the least maximum norm (LMN) of the deviation matrix (R-Q), and to obtain R nearest to Q. The LMN provides the overall minimum range of deviation of the elements of R from those of Q. We also append a computer program (source codes in FORTRAN) to find the LMN R from a given Q. Presently we use the random walk search method for optimization. However, we suggest that more efficient methods based on the Genetic algorithms may replace the random walk algorithm of optimization.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/1783/1/MPRA_paper_1783.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 1783.

as
in new window

Length:
Date of creation: 06 Aug 2004
Date of revision:
Handle: RePEc:pra:mprapa:1783
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Raoul Pietersz & Patrick Groenen, 2004. "Rank reduction of correlation matrices by majorization," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 649-662.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1783. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.