IDEAS home Printed from
   My authors  Follow this author

Andres Algaba

Personal Details

First Name:Andres
Middle Name:
Last Name:Algaba
RePEc Short-ID:pal905
Terminal Degree:2020 Faculteit Economie en Bedrijfskunde; Universiteit Gent (from RePEc Genealogy)


Faculteit van de Economische, Sociale en Politieke Wetenschappen en Solvay Management School
Vrije Universiteit Brussel

Brussel, Belgium
RePEc:edi:fevubbe (more details at EDIRC)

Research output

Jump to: Articles


  1. Andres Algaba & Kris Boudt & Steven Vanduffel, 2020. "The variance implied conditional correlation," The European Journal of Finance, Taylor & Francis Journals, vol. 26(2-3), pages 200-222, February.
  2. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
  3. Algaba, Andres & Boudt, Kris, 2017. "Generalized financial ratios to predict the equity premium," Economic Modelling, Elsevier, vol. 66(C), pages 244-257.


Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.


  1. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.

    Cited by:

    1. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    2. de Medeiros, Rennan Kertlly & da Silva Bejarano Aragón, Edilean Kleber & Besarria, Cássio da Nóbrega, 2023. "Effects of oil market sentiment on macroeconomic variables," Resources Policy, Elsevier, vol. 83(C).
    3. Peter A.G. van Bergeijk, 2021. "Pandemic Economics," Books, Edward Elgar Publishing, number 20401.
    4. Robert Lehmann, 2020. "The Forecasting Power of the ifo Business Survey," CESifo Working Paper Series 8291, CESifo.
    5. VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre (Seville site).
    6. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    7. Mikhail Stolbov & Maria Shchepeleva, 2023. "Sentiment-based indicators of real estate market stress and systemic risk: international evidence," Annals of Finance, Springer, vol. 19(3), pages 355-382, September.
    8. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Mazzotta, Stefano, 2022. "Immigration narrative sentiment from TV news and the stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 34(C).
    10. Aakriti Mathur & Rajeswari Sengupta & Bhanu Pratap, 2022. "Saved by the bell? Equity market responses to surprise Covid-19 lockdowns and central bank interventions," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2022-001, Indira Gandhi Institute of Development Research, Mumbai, India.
    11. Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    12. Ballandonne, Matthieu & Cersosimo, Igor, 2022. "Towards a “Text as Data” Approach in the History of Economics: An Application to Adam Smith’s Classics," OSF Preprints mg3zb, Center for Open Science.
    13. Dorinth van Dijk & Jasper de Winter, 2023. "Nowcasting GDP using tone-adjusted time varying news topics: Evidence from the financial press," Working Papers 766, DNB.
    14. Baranowski, Paweł & Doryń, Wirginia & Łyziak, Tomasz & Stanisławska, Ewa, 2021. "Words and deeds in managing expectations: Empirical evidence from an inflation targeting economy," Economic Modelling, Elsevier, vol. 95(C), pages 49-67.
    15. Jae H. Kim, 2022. "Moving to a world beyond p-value," Review of Managerial Science, Springer, vol. 16(8), pages 2467-2493, November.
    16. Mikhaylov, Dmitry, 2023. "Macroeconomic Forecasting with the Use of News Data," Working Papers w20220250, Russian Presidential Academy of National Economy and Public Administration.
    17. Aktham Maghyereh & Hussein Abdoh, 2022. "Can news-based economic sentiment predict bubbles in precious metal markets?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-29, December.
    18. khan Feroz, Noushad & Hassan, Gazi & Cameron, Michael P., 2022. "To what extent do network effects moderate the relationship between social media propagated news and investors’ perceptions?," Research in Economics, Elsevier, vol. 76(3), pages 170-188.
    19. Gerardin Mathilde, & Ranvier Martial., 2021. "Enrichment of the Banque de France’s monthly business survey: lessons from textual analysis of business leaders’ comments," Working papers 821, Banque de France.
    20. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    21. Danilo Vassallo & Giacomo Bormetti & Fabrizio Lillo, 2019. "A tale of two sentiment scales: Disentangling short-run and long-run components in multivariate sentiment dynamics," Papers 1910.01407,, revised Sep 2020.
    22. Kishor, N. Kundan & Pratap, Bhanu, 2023. "The Role of Inflation Targeting in Anchoring Long-Run Inflation Expectations: Evidence from India," MPRA Paper 118951, University Library of Munich, Germany.
    23. Ahelegbey, Daniel Felix & Cerchiello, Paola & Scaramozzino, Roberta, 2022. "Network based evidence of the financial impact of Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
    24. Gianni La Cava, 2021. "Smells Like Animal Spirits: The Effect of Corporate Sentiment on Investment," RBA Research Discussion Papers rdp2021-11, Reserve Bank of Australia.
    25. Andres Algaba & Samuel Borms & Kris Boudt & Brecht Verbeken, 2021. "Daily news sentiment and monthly surveys: A mixed–frequency dynamic factor model for nowcasting consumer confidence," Working Paper Research 396, National Bank of Belgium.
    26. Elena Shulyak, 2022. "Macroeconomic Forecasting Using Data from Social Media," Russian Journal of Money and Finance, Bank of Russia, vol. 81(4), pages 86-112, December.
    27. Łukasz Baszczak, 2023. "Ekonomia narracji – początki nowego nurtu," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 66-81.
    28. Christoph Kronenberg, 2021. "A New Measure of 19th Century US Suicides," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 157(2), pages 803-815, September.
    29. Fabozzi, Francesco A. & Nazemi, Abdolreza, 2023. "News-based sentiment and the value premium," Journal of International Money and Finance, Elsevier, vol. 136(C).
    30. Aromi, J. Daniel & Clements, Adam, 2021. "Facial expressions and the business cycle," Economic Modelling, Elsevier, vol. 102(C).

  2. Algaba, Andres & Boudt, Kris, 2017. "Generalized financial ratios to predict the equity premium," Economic Modelling, Elsevier, vol. 66(C), pages 244-257.

    Cited by:

    1. Jonathan A. Batten & Harald Kinateder & Niklas Wagner, 2022. "Beating the Average: Equity Premium Variations, Uncertainty, and Liquidity," Abacus, Accounting Foundation, University of Sydney, vol. 58(3), pages 567-588, September.
    2. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.

More information

Research fields, statistics, top rankings, if available.


Access and download statistics for all items

Co-authorship network on CollEc


All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Andres Algaba should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.