IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v16y2006i11p819-833.html
   My bibliography  Save this article

A systematic modelling strategy for futures markets volatility

Author

Listed:
  • Ana Filipa Carvalho
  • Jose Sa da Costa
  • Jose Assis Lopes

Abstract

Over the past decade, econometric modelling of the volatility clustering phenomenon has been a very active area of research and several new approaches have been proposed and tested. Given the ever greater role of futures markets in risk management in modern economic theory, it seems advisable to formulate a systematic methodology for modelling these financial tools. In this paper, using soybean futures data, a systematic modelling strategy is proposed that takes into account the various aspects that should be incorporated in a bona fide volatility model. Several volatility models are analysed and compared in terms of their in-sample fit adequacy and predictive ability. Special attention is devoted to the asymmetric effect that the arrival of news may have on volatility. The proposed approach is sufficiently broad to be applied to other futures markets.

Suggested Citation

  • Ana Filipa Carvalho & Jose Sa da Costa & Jose Assis Lopes, 2006. "A systematic modelling strategy for futures markets volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 16(11), pages 819-833.
  • Handle: RePEc:taf:apfiec:v:16:y:2006:i:11:p:819-833
    DOI: 10.1080/09603100500426408
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603100500426408
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    3. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Modelling S&P 100 volatility: The information content of stock returns," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1665-1679, September.
    4. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    5. Fornari, Fabio & Mele, Antonio, 1996. "Modeling the changing asymmetry of conditional variances," Economics Letters, Elsevier, vol. 50(2), pages 197-203, February.
    6. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    7. Michael Hu & Christine Jiang & Christos Tsoukalas, 2004. "The volatility impact of the European monetary system on member and non-member currencies," Applied Financial Economics, Taylor & Francis Journals, vol. 14(5), pages 313-325.
    8. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    9. Sunil Poshakwale & Victor Murinde, 2001. "Modelling the volatility in East European emerging stock markets: evidence on Hungary and Poland," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 445-456.
    10. David McMillan & Alan Speight, 2003. "Asymmetric volatility dynamics in high frequency FTSE-100 stock index futures," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 599-607.
    11. Fornari, Fabio & Mele, Antonio, 1997. "Sign- and Volatility-Switching ARCH Models: Theory and Applications to International Stock Markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(1), pages 49-65, Jan.-Feb..
    12. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    13. Enrique Sentana, 1995. "Quadratic ARCH Models," Review of Economic Studies, Oxford University Press, vol. 62(4), pages 639-661.
    14. Jun Yu, 2002. "Forecasting volatility in the New Zealand stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 193-202.
    15. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    16. Mohammad Najand, 2002. "Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models," The Financial Review, Eastern Finance Association, vol. 37(1), pages 93-104, February.
    17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    18. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(01), pages 17-43, March.
    19. R. Golinelli & R. Orsi, 2001. "Hungary and Poland," Working Papers 424, Dipartimento Scienze Economiche, Universita' di Bologna.
    20. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    21. Torben G. Andersen & Tim Bollerslev, 1998. "Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," Journal of Finance, American Finance Association, vol. 53(1), pages 219-265, February.
    22. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    23. Christine Jiang & Thomas Chiang, 2000. "Do foreign exchange risk premiums relate to the volatility in the foreign exchange and equity markets?," Applied Financial Economics, Taylor & Francis Journals, vol. 10(1), pages 95-104.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:16:y:2006:i:11:p:819-833. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.