IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v25y2018i4p258-263.html
   My bibliography  Save this article

Economic cycles and downside commodities risk

Author

Listed:
  • Robert J. Powell
  • Duc H. Vo
  • Thach N. Pham

Abstract

We de-compose the S&P Goldman Sachs Commodity Index into its underlying commodity sub-categories and develop a modified conditional value at risk (CVaR) metric to examine downside risk linked to economic periods which are classified by their GDP growth as green, yellow, orange and red. We term this new metric economic CVaR (ECVaR). We found significant differences in the relative ECVaR rankings of different commodities over our different economic cycles.

Suggested Citation

  • Robert J. Powell & Duc H. Vo & Thach N. Pham, 2018. "Economic cycles and downside commodities risk," Applied Economics Letters, Taylor & Francis Journals, vol. 25(4), pages 258-263, February.
  • Handle: RePEc:taf:apeclt:v:25:y:2018:i:4:p:258-263
    DOI: 10.1080/13504851.2017.1316818
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2017.1316818
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2017.1316818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. E. Allen & M. McAleer & R. J. Powell & A. K. Singh, 2016. "A capital adequacy buffer model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(3), pages 175-179, February.
    2. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    3. Ratti, Ronald A & Vespignani, Joaquin L., 2012. "Why are crude oil prices high when global activity is weak?," MPRA Paper 43777, University Library of Munich, Germany.
    4. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    5. David Edmund Allen & Robert John Powell & Abhay Kumar Singh, 2012. "Beyond reasonable doubt: multiple tail risk measures applied to European industries," Applied Economics Letters, Taylor & Francis Journals, vol. 19(7), pages 671-676, May.
    6. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    7. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    8. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    9. Carole Toque & Virginie Terraza, 2014. "Histogram-valued data on value at risk measures: a symbolic approach for risk attribution," Applied Economics Letters, Taylor & Francis Journals, vol. 21(17), pages 1243-1251, November.
    10. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    11. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    12. Ron Bird & Harry Liem & Susan Thorp, 2012. "The Tortoise and the Hare: Risk Premium Versus Alternative Asset Portfolios," Working Paper Series 16, The Paul Woolley Centre for Capital Market Dysfunctionality, University of Technology, Sydney.
    13. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
    14. Ratti, Ronald A. & Vespignani, Joaquin L., 2013. "Why are crude oil prices high when global activity is weak?," Economics Letters, Elsevier, vol. 121(1), pages 133-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Phu Tran & Thang Cong Nguyen & Duc Hong Vo & Michael McAleer, 2019. "Market Risk Analysis of Energy in Vietnam," Risks, MDPI, vol. 7(4), pages 1-13, November.
    2. Duc Hong Vo & Quang Van Tuan & Trung Vu-Thanh Pham, 2019. "Sectoral Risks in Vietnam and Malaysia A Comparative Analysis," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 62-87, March.
    3. Duc Hong Vo, 2021. "Portfolio Optimization and Diversification in China: Policy Implications for Vietnam and Other Emerging Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(1), pages 223-238, January.
    4. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    5. Hoang Huy Nguyen & Chi Minh Ho & Duc Hong Vo, 2019. "An Empirical Test of Capital Structure Theories for the Vietnamese Listed Firms," JRFM, MDPI, vol. 12(3), pages 1-11, September.
    6. Ray-Ming Chen, 2022. "Economic Categorizing Based on DFT-induced Supervised Learning," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 125-150, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, D.H. & Tran, N.P. & Duong, T.N.-T. & McAleer, M.J., 2019. "Risk Analysis of Energy in Vietnam," Econometric Institute Research Papers EI2019-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Ngoc Phu Tran & Thang Cong Nguyen & Duc Hong Vo & Michael McAleer, 2019. "Market Risk Analysis of Energy in Vietnam," Risks, MDPI, vol. 7(4), pages 1-13, November.
    3. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    4. Pham, Linh & Kamal, Javed Bin, 2024. "Blessings or curse: How do media climate change concerns affect commodity tail risk spillovers?," Journal of Commodity Markets, Elsevier, vol. 34(C).
    5. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    6. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    7. Hu, Yang & Lang, Chunlin & Corbet, Shaen & Hou, Yang (Greg) & Oxley, Les, 2023. "Exploring the dynamic behaviour of commodity market tail risk connectedness during the negative WTI pricing event," Energy Economics, Elsevier, vol. 125(C).
    8. Fabian Hollstein & Marcel Prokopczuk & Christoph Würsig, 2020. "Volatility term structures in commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 527-555, April.
    9. Argyropoulos, Christos & Panopoulou, Ekaterini, 2019. "Backtesting VaR and ES under the magnifying glass," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 22-37.
    10. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
    11. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    12. Shen, Yifan & Shi, Xunpeng & Variam, Hari Malamakkavu Padinjare, 2018. "Risk transmission mechanism between energy markets: A VAR for VaR approach," Energy Economics, Elsevier, vol. 75(C), pages 377-388.
    13. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
    14. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    15. repec:wyi:journl:002087 is not listed on IDEAS
    16. Vicente J. Bolós & Rafael Benítez & Román Ferrer, 2020. "A New Wavelet Tool to Quantify Non-Periodicity of Non-Stationary Economic Time Series," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    17. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    18. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    20. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    21. Ye, Wuyi & Luo, Kebing & Liu, Xiaoquan, 2017. "Time-varying quantile association regression model with applications to financial contagion and VaR," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1015-1028.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:25:y:2018:i:4:p:258-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.