IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v54y2013i2p355-369.html
   My bibliography  Save this article

Statistical analysis for Kumaraswamy’s distribution based on record data

Author

Listed:
  • Mustafa Nadar
  • Alexander Papadopoulos
  • Fatih Kızılaslan

Abstract

In this paper we review some results that have been derived on record values for some well known probability density functions and based on m records from Kumaraswamy’s distribution we obtain estimators for the two parameters and the future sth record value. These estimates are derived using the maximum likelihood and Bayesian approaches. In the Bayesian approach, the two parameters are assumed to be random variables and estimators for the parameters and for the future sth record value are obtained, when we have observed m past record values, using the well known squared error loss (SEL) function and a linear exponential (LINEX) loss function. The findings are illustrated with actual and computer generated data. Copyright Springer-Verlag 2013

Suggested Citation

  • Mustafa Nadar & Alexander Papadopoulos & Fatih Kızılaslan, 2013. "Statistical analysis for Kumaraswamy’s distribution based on record data," Statistical Papers, Springer, vol. 54(2), pages 355-369, May.
  • Handle: RePEc:spr:stpapr:v:54:y:2013:i:2:p:355-369
    DOI: 10.1007/s00362-012-0432-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0432-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0432-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jafar Ahmadi & Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2009. "Prediction of k-records from a general class of distributions under balanced type loss functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 19-33, June.
    2. Abbas Seifi & K. Ponnambalam & Jiri Vlach, 2000. "Maximization of Manufacturing Yield of Systems with Arbitrary Distributions of Component Values," Annals of Operations Research, Springer, vol. 99(1), pages 373-383, December.
    3. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    4. Jafar Ahmadi & M. Doostparast, 2006. "Bayesian estimation and prediction for some life distributions based on record values," Statistical Papers, Springer, vol. 47(3), pages 373-392, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emrah Altun & Gauss M. Cordeiro, 2020. "The unit-improved second-degree Lindley distribution: inference and regression modeling," Computational Statistics, Springer, vol. 35(1), pages 259-279, March.
    2. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    3. Kızılaslan, Fatih, 2017. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 36-62.
    4. Vlad Stefan Barbu & Alex Karagrigoriou & Andreas Makrides, 2021. "Reliability and Inference for Multi State Systems: The Generalized Kumaraswamy Case," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    5. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    6. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    7. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.
    8. Weizhong Tian & Liyuan Pang & Chengliang Tian & Wei Ning, 2023. "Change Point Analysis for Kumaraswamy Distribution," Mathematics, MDPI, vol. 11(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    2. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    3. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    4. Schweri, Juerg & Hartog, Joop & Wolter, Stefan C., 2011. "Do students expect compensation for wage risk?," Economics of Education Review, Elsevier, vol. 30(2), pages 215-227, April.
    5. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    6. Timofeeva, Anastasiia, 2015. "On endogeneity of consumer expenditures in the estimation of households demand system," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 37(1), pages 87-106.
    7. Meya, Jasper N. & Drupp, Moritz A. & Hanley, Nick, 2021. "Testing structural benefit transfer: The role of income inequality," Resource and Energy Economics, Elsevier, vol. 64(C).
    8. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    9. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    10. Abbring, Jaap H. & van den Berg, Gerard J., 2003. "A Simple Procedure for the Evaluation of Treatment Effects on Duration Variables," IZA Discussion Papers 810, Institute of Labor Economics (IZA).
    11. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    12. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.
    13. van den Berg, Gerard J., 2007. "On the uniqueness of optimal prices set by monopolistic sellers," Journal of Econometrics, Elsevier, vol. 141(2), pages 482-491, December.
    14. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    15. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    16. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    17. Denis Beninger & François Laisney, 2006. "On the performance of unitary models of household labor supply estimated on “collective” data with taxation," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 81, pages 5-36.
    18. Oded Stark & Wiktor Budzinski & Grzegorz Kosiorowski, 2019. "The pure effect of social preferences on regional location choices: The evolving dynamics of convergence to a steady state population distribution," Journal of Regional Science, Wiley Blackwell, vol. 59(5), pages 883-909, November.
    19. Saissi Hassani, Samir & Dionne, Georges, 2021. "The New International Regulation of Market Risk: Roles of VaR and CVaR in Model Validation," Working Papers 21-1, HEC Montreal, Canada Research Chair in Risk Management.
    20. Michael McAleer & Hang K. Ryu & Daniel J. Slottje, 2019. "A New Inequality Measure that is Sensitive to Extreme Values and Asymmetries," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 31-61, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:2:p:355-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.