IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0268602.html
   My bibliography  Save this article

The principle of maximum entropy and the probability-weighted moments for estimating the parameters of the Kumaraswamy distribution

Author

Listed:
  • Amal Helu

Abstract

Since Shannon’s formulation of the entropy theory in 1940 and Jaynes’ discovery of the principle of maximum entropy (POME) in 1950, entropy applications have proliferated across a wide range of different research areas including hydrological and environmental sciences. In addition to POME, the method of probability-weighted moments (PWM), was introduced and recommended as an alternative to classical moments. The PWM is thought to be less impacted by sampling variability and be more efficient at obtaining robust parameter estimates. To enhance the PWM, self-determined probability-weighted moments was introduced by (Haktanir 1997). In this article, we estimate the parameters of Kumaraswamy distribution using the previously mentioned methods. These methods are compared to two older methods, the maximum likelihood and the conventional method of moments techniques using Monte Carlo simulations. A numerical example based on real data is presented to illustrate the implementation of the proposed procedures.

Suggested Citation

  • Amal Helu, 2022. "The principle of maximum entropy and the probability-weighted moments for estimating the parameters of the Kumaraswamy distribution," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0268602
    DOI: 10.1371/journal.pone.0268602
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268602
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0268602&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0268602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mustafa Nadar & Alexander Papadopoulos & Fatih Kızılaslan, 2013. "Statistical analysis for Kumaraswamy’s distribution based on record data," Statistical Papers, Springer, vol. 54(2), pages 355-369, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    2. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    3. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    4. Vlad Stefan Barbu & Alex Karagrigoriou & Andreas Makrides, 2021. "Reliability and Inference for Multi State Systems: The Generalized Kumaraswamy Case," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    5. Weizhong Tian & Liyuan Pang & Chengliang Tian & Wei Ning, 2023. "Change Point Analysis for Kumaraswamy Distribution," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    6. Kızılaslan, Fatih, 2017. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 36-62.
    7. Emrah Altun & Gauss M. Cordeiro, 2020. "The unit-improved second-degree Lindley distribution: inference and regression modeling," Computational Statistics, Springer, vol. 35(1), pages 259-279, March.
    8. Shubham Saini, 2025. "Advancements in reliability estimation for the exponentiated Pareto distribution: a comparison of classical and Bayesian methods with lower record values," Computational Statistics, Springer, vol. 40(1), pages 353-382, January.
    9. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0268602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.