IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i1d10.1007_s00180-019-00921-y.html
   My bibliography  Save this article

The unit-improved second-degree Lindley distribution: inference and regression modeling

Author

Listed:
  • Emrah Altun

    (Bartin University
    Bartin University)

  • Gauss M. Cordeiro

    (Federal University of Pernambuco)

Abstract

We define a new one-parameter model on the unit interval, called the unit-improved second-degree Lindley distribution, and obtain some of its structural properties. The methods of maximum likelihood, bias-corrected maximum likelihood, moments, least squares and weighted least squares are used to estimate the unknown parameter. The finite sample performance of these methods are investigated by means of Monte Carlo simulations. Moreover, we introduce a new regression model as an alternative to the beta, unit-Lindley and simplex regression models and present a residual analysis based on Pearson and Cox–Snell residuals. The new models are proved empirically to be competitive to the beta, Kumaraswamy, simplex, unit-Lindley, unit-Gamma and Topp–Leone models by means of two real data sets. Empirical findings indicate that the proposed models can provide better fits than other competitive models when the data are close to the boundaries of the unit interval.

Suggested Citation

  • Emrah Altun & Gauss M. Cordeiro, 2020. "The unit-improved second-degree Lindley distribution: inference and regression modeling," Computational Statistics, Springer, vol. 35(1), pages 259-279, March.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00921-y
    DOI: 10.1007/s00180-019-00921-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00921-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00921-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Gómez-Déniz, Emilio & Sordo, Miguel A. & Calderín-Ojeda, Enrique, 2014. "The Log–Lindley distribution as an alternative to the beta regression model with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 49-57.
    3. Mustafa Nadar & Alexander Papadopoulos & Fatih Kızılaslan, 2013. "Statistical analysis for Kumaraswamy’s distribution based on record data," Statistical Papers, Springer, vol. 54(2), pages 355-369, May.
    4. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    5. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    6. Saralees Nadarajah & Samuel Kotz, 2003. "Moments of some J-shaped distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(3), pages 311-317.
    7. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    2. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    3. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    4. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    5. Wang, Shaochen & Weiß, Christian H., 2023. "New characterizations of the (discrete) Lindley distribution and their applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 310-322.
    6. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    7. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    8. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    9. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.
    10. Gómez-Déniz, Emilio & Sordo, Miguel A. & Calderín-Ojeda, Enrique, 2014. "The Log–Lindley distribution as an alternative to the beta regression model with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 49-57.
    11. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    12. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    13. Mehdi Jabbari Nooghabi, 2021. "Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    14. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    15. Ahlam H. Tolba & Chrisogonus K. Onyekwere & Ahmed R. El-Saeed & Najwan Alsadat & Hanan Alohali & Okechukwu J. Obulezi, 2023. "A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    16. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    17. Patawa, Rohit & Pundir, Pramendra Singh, 2023. "Inferential study of single unit repairable system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 503-516.
    18. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    19. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    20. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00921-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.