IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v8y2021i1d10.1186_s40488-021-00127-y.html
   My bibliography  Save this article

New class of Lindley distributions: properties and applications

Author

Listed:
  • Duha Hamed

    (Winthrop University)

  • Ahmad Alzaghal

    (State University of New York at Farmingdale)

Abstract

A new generalized class of Lindley distribution is introduced in this paper. This new class is called the T-Lindley{Y} class of distributions, and it is generated by using the quantile functions of uniform, exponential, Weibull, log-logistic, logistic and Cauchy distributions. The statistical properties including the modes, moments and Shannon’s entropy are discussed. Three new generalized Lindley distributions are investigated in more details. For estimating the unknown parameters, the maximum likelihood estimation has been used and a simulation study was carried out. Lastly, the usefulness of this new proposed class in fitting lifetime data is illustrated using four different data sets. In the application section, the strength of members of the T-Lindley{Y} class in modeling both unimodal as well as bimodal data sets is presented. A member of the T-Lindley{Y} class of distributions outperformed other known distributions in modeling unimodal and bimodal lifetime data sets.

Suggested Citation

  • Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
  • Handle: RePEc:spr:jstada:v:8:y:2021:i:1:d:10.1186_s40488-021-00127-y
    DOI: 10.1186/s40488-021-00127-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-021-00127-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-021-00127-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Richard E. Chandler & Steven Bate, 2007. "Inference for clustered data using the independence loglikelihood," Biometrika, Biometrika Trust, vol. 94(1), pages 167-183.
    3. Ghitany, M.E. & Alqallaf, F. & Al-Mutairi, D.K. & Husain, H.A., 2011. "A two-parameter weighted Lindley distribution and its applications to survival data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(6), pages 1190-1201.
    4. Faton Merovci & Vikas Kumar Sharma, 2014. "The Beta-Lindley Distribution: Properties and Applications," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, August.
    5. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    6. M. H. Tahir & Gauss M. Cordeiro & M. Mansoor & M. Zubair & Morad Alizadeh, 2016. "The Weibull–Dagum distribution: Properties and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(24), pages 7376-7398, December.
    7. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    8. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    9. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanku Dey & Indranil Ghosh & Devendra Kumar, 2019. "Alpha-Power Transformed Lindley Distribution: Properties and Associated Inference with Application to Earthquake Data," Annals of Data Science, Springer, vol. 6(4), pages 623-650, December.
    2. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    3. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    4. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    5. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    6. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    7. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    8. Ahmed M. T. Abd El-Bar & Willams B. F. da Silva & Abraão D. C. Nascimento, 2021. "An Extended log-Lindley-G Family: Properties and Experiments in Repairable Data," Mathematics, MDPI, vol. 9(23), pages 1-15, December.
    9. Shikhar Tyagi & Arvind Pandey & Christophe Chesneau, 2022. "Weighted Lindley Shared Regression Model for Bivariate Left Censored Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 655-682, November.
    10. A. Shabani & M. Khaleghi Moghadam & A. Gholami & E. Moradi, 2018. "Exponentiated Power Lindley Logarithmic: Model, Properties and Applications," Annals of Data Science, Springer, vol. 5(4), pages 583-613, December.
    11. Zeghdoudi Halim & Nouara Lazri & Yahia Djabrane, 2018. "Lindley Pareto Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 671-692, December.
    12. Halim Zeghdoudi & Lazri Nouara & Djabrane Yahia, 2018. "Lindley Pareto Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 671-692, December.
    13. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Muhammad Hilmi Abdul Majid, 2020. "Robust Reliability Estimation for Lindley Distribution—A Probability Integral Transform Statistical Approach," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    14. Morad Alizadeh & Emrah Altun & Gamze Ozel & Mahmoud Afshari & Abbas Eftekharian, 2019. "A New Odd Log-Logistic Lindley Distribution with Properties and Applications," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 323-346, December.
    15. A. Mishra & R. Shanker, 2013. "A two-parameter Lindley distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 45-56, March.
    16. Devendra Kumar & Anju Goyal, 2019. "Order Statistics from the Power Lindley Distribution and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(1), pages 153-177, March.
    17. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    18. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    19. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    20. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:8:y:2021:i:1:d:10.1186_s40488-021-00127-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.