IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i4p87-d1759402.html
   My bibliography  Save this article

Energy Statistic-Based Goodness-of-Fit Test for the Lindley Distribution with Application to Lifetime Data

Author

Listed:
  • Joseph Njuki

    (Department of Mathematics and Statistics, Coastal Carolina University, Conway, SC 29526, USA)

  • Ryan Avallone

    (Department of Mathematics and Statistics, Coastal Carolina University, Conway, SC 29526, USA)

Abstract

In this article, we propose a goodness-of-fit test for a one-parameter Lindley distribution based on energy statistics. The Lindley distribution has been widely used in reliability studies and survival analysis, especially in applied sciences. The proposed test procedure is simple and more powerful against general alternatives. Under different settings, Monte Carlo simulations show that the proposed test is able to be well controlled for any given nominal levels. In terms of power, the proposed test outperforms other existing similar methods in different settings. We then apply the proposed test to real-life datasets to demonstrate its competitiveness and usefulness.

Suggested Citation

  • Joseph Njuki & Ryan Avallone, 2025. "Energy Statistic-Based Goodness-of-Fit Test for the Lindley Distribution with Application to Lifetime Data," Stats, MDPI, vol. 8(4), pages 1-14, September.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:4:p:87-:d:1759402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/4/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/4/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Rizzo, Maria L., 2009. "New Goodness-of-Fit Tests for Pareto Distributions," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 691-715, November.
    3. Vexler, Albert & Gurevich, Gregory, 2010. "Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 531-545, February.
    4. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    5. David S. Matteson & Nicholas A. James, 2014. "A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 334-345, March.
    6. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    7. Szekely, Gábor J. & Rizzo, Maria L., 2005. "A new test for multivariate normality," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 58-80, March.
    8. Wei Ning & Grace Ngunkeng, 2013. "An empirical likelihood ratio based goodness-of-fit test for skew normality," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 209-226, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 13-34, June.
    2. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    3. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    4. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Statistics Poland, vol. 19(4), pages 597-620, December.
    5. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    6. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    7. Mehdi Jabbari Nooghabi, 2021. "Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    8. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    9. Ahlam H. Tolba & Chrisogonus K. Onyekwere & Ahmed R. El-Saeed & Najwan Alsadat & Hanan Alohali & Okechukwu J. Obulezi, 2023. "A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    10. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    11. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    12. Patawa, Rohit & Pundir, Pramendra Singh, 2023. "Inferential study of single unit repairable system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 503-516.
    13. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    14. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    15. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    16. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    17. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    18. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    19. M. R. Irshad & R. Maya, 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.
    20. Ramajeyam Tharshan & Pushpakanthie Wijekoon, 2020. "A comparison study on a new five-parameter generalized Lindley distribution with its sub-models," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 89-117, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:4:p:87-:d:1759402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.