IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v66y2001i2p249-270.html
   My bibliography  Save this article

A variable-selection heuristic for K-means clustering

Author

Listed:
  • Michael Brusco

    ()

  • J. Cradit

Abstract

No abstract is available for this item.

Suggested Citation

  • Michael Brusco & J. Cradit, 2001. "A variable-selection heuristic for K-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 249-270, June.
  • Handle: RePEc:spr:psycho:v:66:y:2001:i:2:p:249-270
    DOI: 10.1007/BF02294838
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294838
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    2. P. (Sundar) Balakrishnan & Martha Cooper & Varghese Jacob & Phillip Lewis, 1994. "A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 509-525, December.
    3. Wayne DeSarbo & J. Carroll & Linda Clark & Paul Green, 1984. "Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 57-78, March.
    4. Paul Green & Jonathan Kim & Frank Carmone, 1990. "A preliminary study of optimal variable weighting in k-means clustering," Journal of Classification, Springer;The Classification Society, vol. 7(2), pages 271-285, September.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Geert Soete, 1986. "Optimal variable weighting for ultrametric and additive tree clustering," Quality & Quantity: International Journal of Methodology, Springer, vol. 20(2), pages 169-180, June.
    7. Robert Saltstone & Ken Stange, 1996. "A computer program to calculate Hubert and Arabie's adjusted rand index," Journal of Classification, Springer;The Classification Society, vol. 13(1), pages 169-172, March.
    8. E. Fowlkes & R. Gnanadesikan & J. Kettenring, 1988. "Variable selection in clustering," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 205-228, September.
    9. Glenn Milligan, 1989. "A validation study of a variable weighting algorithm for cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 53-71, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brusco, Michael J. & Steinley, Douglas, 2011. "Exact and approximate algorithms for variable selection in linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 123-131, January.
    2. Krzanowski, Wojtek J. & Hand, David J., 2009. "A simple method for screening variables before clustering microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2747-2753, May.
    3. Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
    4. Guan-Hua Huang & Su-Mei Wang & Chung-Chu Hsu, 2011. "Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 584-611, October.
    5. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    6. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    7. Douglas L. Steinley, 2016. "Editorial," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 167-170, July.
    8. Tom Frans Wilderjans & Eva Gaer & Henk A. L. Kiers & Iven Mechelen & Eva Ceulemans, 2017. "Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 86-111, March.
    9. Gao, Jinxin & Hitchcock, David B., 2010. "James-Stein shrinkage to improve k-means cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2113-2127, September.
    10. Pacheco, Joaquín & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
    11. Grn, Bettina & Leisch, Friedrich, 2009. "Dealing with label switching in mixture models under genuine multimodality," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 851-861, May.
    12. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    13. Douglas Steinley, 2007. "Validating Clusters with the Lower Bound for Sum-of-Squares Error," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 93-106, March.
    14. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    15. Joke Heylen & Iven Mechelen & Philippe Verduyn & Eva Ceulemans, 2016. "KSC-N: Clustering of Hierarchical Time Profile Data," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 411-433, June.
    16. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    17. Thomas Reutterer & Kurt Hornik & Nicolas March & Kathrin Gruber, 2017. "A data mining framework for targeted category promotions," Journal of Business Economics, Springer, vol. 87(3), pages 337-358, April.
    18. Santi, √Čverton & Aloise, Daniel & Blanchard, Simon J., 2016. "A model for clustering data from heterogeneous dissimilarities," European Journal of Operational Research, Elsevier, vol. 253(3), pages 659-672.
    19. Kim De Roover & Eva Ceulemans & Marieke Timmerman & John Nezlek & Patrick Onghena, 2013. "Modeling Differences in the Dimensionality of Multiblock Data by Means of Clusterwise Simultaneous Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 648-668, October.
    20. Douglas Steinley & Gretchen Hendrickson & Michael Brusco, 2015. "A Note on Maximizing the Agreement Between Partitions: A Stepwise Optimal Algorithm and Some Properties," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 114-126, April.
    21. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:66:y:2001:i:2:p:249-270. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.