IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v7y2019i1d10.1057_s41270-018-0045-7.html
   My bibliography  Save this article

Joint selection of variables and clusters: recovering the underlying structure of marketing data

Author

Listed:
  • Susan Brudvig

    (Indiana University East)

  • Michael J. Brusco

    (Florida State University)

  • J. Dennis Cradit

    (Florida State University)

Abstract

Clustering observations into groups is perhaps one of the more common marketing analytic techniques. Many variable-selection procedures are available for clustering, and some have exhibited good performance in simulation studies. Unfortunately, the best-performing methods often fail because they emphasize the clustering power of individual variables. For this reason, we recommend extreme caution when using the existing procedures, and we argue that enumeration of all-possible variable subsets is a preferred strategy. We also address a common decision problem—the selection of the number of clusters—and develop an index which can help guide the joint selection of variables and clusters. By way of an empirical example, we illustrate the variable-selection problem and demonstrate the use of the proposed index to jointly select variables and clusters in K-means partitioning.

Suggested Citation

  • Susan Brudvig & Michael J. Brusco & J. Dennis Cradit, 2019. "Joint selection of variables and clusters: recovering the underlying structure of marketing data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(1), pages 1-12, March.
  • Handle: RePEc:pal:jmarka:v:7:y:2019:i:1:d:10.1057_s41270-018-0045-7
    DOI: 10.1057/s41270-018-0045-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-018-0045-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-018-0045-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Fischer & Peter Leeflang & Peter Verhoef, 2010. "Drivers of peak sales for pharmaceutical brands," Quantitative Marketing and Economics (QME), Springer, vol. 8(4), pages 429-460, December.
    2. Marcel Corstjens & Edouard Demeire & Ira Horowitz, 2005. "New-product success in the pharmaceutical industry: how many bites at the cherry?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(4), pages 319-331.
    3. R. Gnanadesikan & J. Kettenring & S. Tsao, 1995. "Weighting and selection of variables for cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 113-136, March.
    4. Maria Palazzo & Agostino Vollero & Alfonso Siano, 2016. "Identifying new segments from a global branding perspective: a three-country study," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 159-171, December.
    5. Gurumurthy Kalyanaram & William T. Robinson & Glen L. Urban, 1995. "Order of Market Entry: Established Empirical Generalizations, Emerging Empirical Generalizations, and Future Research," Marketing Science, INFORMS, vol. 14(3_supplem), pages 212-221.
    6. Paul Green & Jonathan Kim & Frank Carmone, 1990. "A preliminary study of optimal variable weighting in k-means clustering," Journal of Classification, Springer;The Classification Society, vol. 7(2), pages 271-285, September.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    8. Yamen Koubaa & Rym Srarfi Tabbane & Manel Hamouda, 2017. "Segmentation of the senior market: how do different variable sets discriminate between senior segments?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(3), pages 99-110, December.
    9. Jerome H. Friedman & Jacqueline J. Meulman, 2004. "Clustering objects on subsets of attributes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 815-849, November.
    10. Henry Grabowski & John Vernon, 1990. "A New Look at the Returns and Risks to Pharmaceutical R&D," Management Science, INFORMS, vol. 36(7), pages 804-821, July.
    11. Montanari, Angela & Lizzani, Laura, 2001. "A projection pursuit approach to variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 463-473, February.
    12. Wayne DeSarbo & J. Carroll & Linda Clark & Paul Green, 1984. "Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 57-78, March.
    13. Michael Brusco & Douglas Steinley, 2007. "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 583-600, December.
    14. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    15. Michael Brusco & J. Cradit, 2001. "A variable-selection heuristic for K-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 249-270, June.
    16. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    17. Glenn Milligan, 1989. "A validation study of a variable weighting algorithm for cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 6(1), pages 53-71, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Michael Spoor, 2023. "Improving customer segmentation via classification of key accounts as outliers," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 747-760, December.
    2. Marco Vriens & Nathan Bosch & Chad Vidden & Jason Talwar, 2022. "Prediction and profitability in market segmentation typing tools," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(4), pages 360-389, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    2. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    3. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    4. Michael Brusco & J. Cradit, 2001. "A variable-selection heuristic for K-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 249-270, June.
    5. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    6. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    7. Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
    8. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    9. Gao, Jinxin & Hitchcock, David B., 2010. "James-Stein shrinkage to improve k-means cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2113-2127, September.
    10. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(2), pages 295-304, June.
    11. Marc Fischer & Peter Leeflang & Peter Verhoef, 2010. "Drivers of peak sales for pharmaceutical brands," Quantitative Marketing and Economics (QME), Springer, vol. 8(4), pages 429-460, December.
    12. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    13. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    14. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    15. Renato Amorim, 2015. "Feature Relevance in Ward’s Hierarchical Clustering Using the L p Norm," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 46-62, April.
    16. Maarten M. Kampert & Jacqueline J. Meulman & Jerome H. Friedman, 2017. "rCOSA: A Software Package for Clustering Objects on Subsets of Attributes," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 514-547, October.
    17. Grn, Bettina & Leisch, Friedrich, 2009. "Dealing with label switching in mixture models under genuine multimodality," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 851-861, May.
    18. Naoto Yamashita & Kohei Adachi, 2020. "A Modified k-Means Clustering Procedure for Obtaining a Cardinality-Constrained Centroid Matrix," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 509-525, July.
    19. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    20. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:7:y:2019:i:1:d:10.1057_s41270-018-0045-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.