IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v59y1994i4p509-525.html
   My bibliography  Save this article

A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-means clustering

Author

Listed:
  • P. (Sundar) Balakrishnan
  • Martha Cooper
  • Varghese Jacob
  • Phillip Lewis

Abstract

No abstract is available for this item.

Suggested Citation

  • P. (Sundar) Balakrishnan & Martha Cooper & Varghese Jacob & Phillip Lewis, 1994. "A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 509-525, December.
  • Handle: RePEc:spr:psycho:v:59:y:1994:i:4:p:509-525
    DOI: 10.1007/BF02294390
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294390
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    2. Glenn Milligan, 1980. "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 325-342, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Batchelor & George Albanis, 2002. "Combining Heterogeneous Classifiers for Stock Selection," Working Papers wp02-01, Warwick Business School, Finance Group.
    2. Niels Waller & Heather Kaiser & Janine Illian & Mike Manry, 1998. "A comparison of the classification capabilities of the 1-dimensional kohonen neural network with two pratitioning and three hierarchical cluster analysis algorithms," Psychometrika, Springer;The Psychometric Society, vol. 63(1), pages 5-22, March.
    3. Mingoti, Sueli A. & Lima, Joab O., 2006. "Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1742-1759, November.
    4. Balakrishnan, P. V. (Sundar) & Cooper, Martha C. & Jacob, Varghese S. & Lewis, Phillip A., 1996. "Comparative performance of the FSCL neural net and K-means algorithm for market segmentation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 346-357, September.
    5. Hruschka, Harald & Natter, Martin, 1999. "Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation," European Journal of Operational Research, Elsevier, vol. 114(2), pages 346-353, April.
    6. Fish, Kelly E. & Johnson, John D. & Dorsey, Robert E. & Blodgett, Jeffery G., 2004. "Using an artificial neural network trained with a genetic algorithm to model brand share," Journal of Business Research, Elsevier, vol. 57(1), pages 79-85, January.
    7. Michael Brusco & J. Cradit, 2001. "A variable-selection heuristic for K-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 249-270, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:59:y:1994:i:4:p:509-525. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.