On the comparison of model-based clustering solutions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chae, Seong S. & DuBien, Janice L. & Warde, William D., 2006. "A method of predicting the number of clusters using Rand's statistic," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3531-3546, August.
- Fraley C. & Raftery A.E., 2002. "Model-Based Clustering, Discriminant Analysis, and Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 611-631, June.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Matthijs Warrens, 2008. "On the Equivalence of Cohen’s Kappa and the Hubert-Arabie Adjusted Rand Index," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 177-183, November.
- Michael Brusco & J. Cradit, 2001. "A variable-selection heuristic for K-means clustering," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 249-270, June.
- Matthijs Warrens, 2008. "On Similarity Coefficients for 2×2 Tables and Correction for Chance," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 487-502, September.
- James G.M. & Sugar C.A., 2003. "Clustering for Sparsely Sampled Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 397-408, January.
- Ahmed N. Albatineh & Magdalena Niewiadomska-Bugaj & Daniel Mihalko, 2006. "On Similarity Indices and Correction for Chance Agreement," Journal of Classification, Springer;The Classification Society, vol. 23(2), pages 301-313, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
- Matthijs J. Warrens, 2014. "New Interpretations of Cohen’s Kappa," Journal of Mathematics, Hindawi, vol. 2014, pages 1-9, September.
- Isabella Morlini & Sergio Zani, 2012. "Dissimilarity and similarity measures for comparing dendrograms and their applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 85-105, July.
- Matthijs J. Warrens & Hanneke Hoef, 2022. "Understanding the Adjusted Rand Index and Other Partition Comparison Indices Based on Counting Object Pairs," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 487-509, November.
- Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
- Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
- Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
- Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
- Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.
- Martina Sundqvist & Julien Chiquet & Guillem Rigaill, 2023. "Adjusting the adjusted Rand Index," Computational Statistics, Springer, vol. 38(1), pages 327-347, March.
- J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
- De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
- Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
- Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
- Wang, Xiaogang & Qiu, Weiliang & Zamar, Ruben H., 2007. "CLUES: A non-parametric clustering method based on local shrinking," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 286-298, September.
- Antonio D’Ambrosio & Sonia Amodio & Carmela Iorio & Giuseppe Pandolfo & Roberta Siciliano, 2021. "Adjusted Concordance Index: an Extensionl of the Adjusted Rand Index to Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 112-128, April.
- Wang, Wan-Lun, 2013. "Mixtures of common factor analyzers for high-dimensional data with missing information," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 120-133.
- Sun Jiehuan & Warren Joshua L. & Zhao Hongyu, 2017. "A Bayesian semiparametric factor analysis model for subtype identification," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 145-158, April.
- Jeffrey L. Andrews & Ryan Browne & Chelsey D. Hvingelby, 2022. "On Assessments of Agreement Between Fuzzy Partitions," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 326-342, July.
- Ekaterina Kovaleva & Boris Mirkin, 2015. "Bisecting K-Means and 1D Projection Divisive Clustering: A Unified Framework and Experimental Comparison," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 414-442, October.
More about this item
Keywords
similarity indices; Rand index; mixture models; bootstrap.;All these keywords.
JEL classification:
- C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other
- C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
- C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2013:05. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geraldine Ludbrook (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.