IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v35y2022i3d10.1007_s13563-021-00296-x.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

What we have learned from the past and how we should look forward

Author

Listed:
  • Friedrich-W. Wellmer

Abstract

From the vantage point of more than 50 years’ work in the raw material field, as well as working in the private sector, in the German federal ministry of economics, at a geological survey, and engaged in teaching and supervising research at a university, I draw a number of conclusions about the following aspects of the fields: development of long-term prices, the long-term supply situation, especially the expectation of an imminent peaking of supply, the frequent and mistaken prediction of shortfalls in supply, our understanding of reserves and resources, and the cyclic nature of success in exploration. I am solely dealing with geological aspects, not taking into account political inferences and supply disruptions. This is followed by an attempt to look into the future of raw materials demand within the framework of the accelerating green energy transition. These conclusions are: Conclusion 1: When two amplifying effects overlap, long-term price trends can be broken. Conclusion 2: All growth rates flatten eventually. Never extrapolate high growth rates too far! However, growth rates are learning curves that move in waves and can steepen again. In general, the higher the production the lower the growth rates, even in exceptional cases. Conclusion 3: It is unclear, whether we have already reached the stage when growth rates of the major metals have flattened, but sooner or later it will come. Conclusion 4: Sooner or later we shall see demand peaking for primary metals of all commodities (in contrast to peak supply) because the share of secondary metals will grow and the consumption per capita reaches saturation levels. Conclusion 5: The reserve/ production ratio (R/P-ratio) is only a snapshot of a dynamically evolving reserve/resources system. The learning effects during exploration so far are in step with ever-increasing consumption. Serious limits to reserves are nowhere to be seen. Conclusion 6: Rapid changes in production rates may be accompanied by significant decreases in R/P-ratios and it would appear justified to suspect that advances in exploration cannot always keep pace with consumption. However, as long as the R/P-ratios do not fall below 50 for stratabound deposits and 25 for other deposits and exploration activities continue apace as normal there is no reason to worry about future supply bottlenecks. Conclusion 7: The R/P-ratios are useless as indicators for lifetime; however, they are helpful as early warning indicators for looming problems of supply and for indicating the need for boosting exploration. Conclusion 8: Exploration discoveries show episodic behaviour. Therefore it is difficult to extrapolate into the future. So far all pessimistic forecasts have been proven wrong by ingenious advances to detect new ore bodies to replace mined-out reserves. Conclusion 9: Supply shortages have been forecast frequently in the past. They never actually happened. The self-regulating feedback control cycle of mineral supply safeguards adequate supply over time. There is no reason to assume that this system of self-correcting forecasts will not work in the future.

Suggested Citation

  • Friedrich-W. Wellmer, 2022. "What we have learned from the past and how we should look forward," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 765-795, December.
  • Handle: RePEc:spr:minecn:v:35:y:2022:i:3:d:10.1007_s13563-021-00296-x
    DOI: 10.1007/s13563-021-00296-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-021-00296-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-021-00296-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Buchholz & Friedrich-W. Wellmer & Dennis Bastian & Maren Liedtke, 2020. "Leaning against the wind: low-price benchmarks for acting anticyclically in the metal markets," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 81-100, July.
    2. Stuermer, Martin, 2018. "150 Years Of Boom And Bust: What Drives Mineral Commodity Prices?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 702-717, April.
    3. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    4. Friedrich -W. Wellmer & Roland W. Scholz, 2017. "Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 73-93, July.
    5. Lawrence D. Meinert & Gilpin R. Robinson & Nedal T. Nassar, 2016. "Mineral Resources: Reserves, Peak Production and the Future," Resources, MDPI, vol. 5(1), pages 1-14, February.
    6. Rosenau-Tornow, Dirk & Buchholz, Peter & Riemann, Axel & Wagner, Markus, 2009. "Assessing the long-term supply risks for mineral raw materials--a combined evaluation of past and future trends," Resources Policy, Elsevier, vol. 34(4), pages 161-175, December.
    7. Owen, John R. & Kemp, Deanna, 2013. "Social licence and mining: A critical perspective," Resources Policy, Elsevier, vol. 38(1), pages 29-35.
    8. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    9. Patrice Christmann, 2021. "Mineral Resource Governance in the 21st Century and a sustainable European Union," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 187-208, July.
    10. Sven Renner & Friedrich W. Wellmer, 2020. "Volatility drivers on the metal market and exposure of producing countries," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(3), pages 311-340, October.
    11. Jinhyuk Lee & Daniil A. Kitchaev & Deok-Hwang Kwon & Chang-Wook Lee & Joseph K. Papp & Yi-Sheng Liu & Zhengyan Lun & Raphaële J. Clément & Tan Shi & Bryan D. McCloskey & Jinghua Guo & Mahalingam Balas, 2018. "Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials," Nature, Nature, vol. 556(7700), pages 185-190, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich-W. Wellmer & Marius Kern, 2024. "The dynamics and long-term availability of the total resources from the geosphere and technosphere—re-examined," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(2), pages 227-244, June.
    2. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    3. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    4. Peter Buchholz & Arne Schumacher & Siyamend Barazi, 2022. "Big data analyses for real-time tracking of risks in the mineral raw material markets: implications for improved supply chain risk management," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 701-744, December.
    5. Larona S. Teseletso & Tsuyoshi Adachi, 2023. "Future availability of mineral resources: ultimate reserves and total material requirement," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 189-206, June.
    6. Harald Ulrik Sverdrup & Anna Hulda Olafsdottir & Kristin Vala Ragnarsdottir, 2017. "Modelling Global Wolfram Mining, Secondary Extraction, Supply, Stocks-in-Society, Recycling, Market Price and Resources, Using the WORLD6 System Dynamics Model," Biophysical Economics and Resource Quality, Springer, vol. 2(3), pages 1-17, September.
    7. József Popp & Judit Oláh & Mária Farkas Fekete & Zoltán Lakner & Domicián Máté, 2018. "The Relationship Between Prices of Various Metals, Oil and Scarcity," Energies, MDPI, vol. 11(9), pages 1-19, September.
    8. Friedrich -W. Wellmer & Roland W. Scholz, 2017. "Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 73-93, July.
    9. Steve Mohr & Damien Giurco & Monique Retamal & Leah Mason & Gavin Mudd, 2018. "Global Projection of Lead-Zinc Supply from Known Resources," Resources, MDPI, vol. 7(1), pages 1-15, February.
    10. Anna Hulda Olafsdottir & Harald Ulrik Sverdrup, 2018. "Modelling Global Mining, Secondary Extraction, Supply, Stocks-in-Society, Recycling, Market Price and Resources, Using the WORLD6 Model; Tin," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-17, September.
    11. António Mateus & Catarina Lopes & Luís Martins & Mário Abel Gonçalves, 2021. "Current and Foreseen Tungsten Production in Portugal, and the Need of Safeguarding the Access to Relevant Known Resources," Resources, MDPI, vol. 10(6), pages 1-26, June.
    12. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    13. Jacks, David S. & Stuermer, Martin, 2020. "What drives commodity price booms and busts?," Energy Economics, Elsevier, vol. 85(C).
    14. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    15. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    16. Friedrich-Wilhelm Wellmer & Roland W. Scholz, 2018. "What Is the Optimal and Sustainable Lifetime of a Mine?," Sustainability, MDPI, vol. 10(2), pages 1-22, February.
    17. David S. Jacks & Martin Stuermer, 2021. "Dry bulk shipping and the evolution of maritime transport costs, 1850–2020," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 61(2), pages 204-227, July.
    18. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    19. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    20. Zaremba, Adam & Bianchi, Robert J. & Mikutowski, Mateusz, 2021. "Long-run reversal in commodity returns: Insights from seven centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:35:y:2022:i:3:d:10.1007_s13563-021-00296-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.