IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p480-d131397.html
   My bibliography  Save this article

What Is the Optimal and Sustainable Lifetime of a Mine?

Author

Listed:
  • Friedrich-Wilhelm Wellmer

    (Formerly Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany
    Private address: Neue Sachlichkeit 32, D-30655 Hannover, Germany.)

  • Roland W. Scholz

    (Department of Knowledge Management and Communication, Faculty of Business and Globalization, Danube University, 3500 Krems, Austria
    Swiss Federal Institute of Technology (ETH), 8096 Zurich, Switzerland
    Department of Physical Process Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), 70569 Stuttgart, Germany)

Abstract

The first stage of the circular economy, mining, is examined from the perspective of sustainability. The authors discuss how to maximize the use of phosphate rock, a primary commodity. To attract investment capital in a market economy system, a mine has to operate profitably, i.e., its lifetime must be optimized under economic conditions, for example, according to Taylor’s Rule. From a sustainability perspective, however, the lifetime should extend as long as possible and the grades mined be as low as possible. The authors examine methods for optimizing a mine’s lifetime under economic conditions according to practical experience and learning effects to optimize exploration and exploitation. With the condition of sustainability, a recently developed concept of cut-off grade for a layered phosphate deposit is examined and considerations for prolonging a mine’s lifetime are discussed. As there are big losses from the current and potential future value chains above and below the current cut-off grade, we argue that the losses and use efficiency of phosphorus are key parts of a circular economy.

Suggested Citation

  • Friedrich-Wilhelm Wellmer & Roland W. Scholz, 2018. "What Is the Optimal and Sustainable Lifetime of a Mine?," Sustainability, MDPI, vol. 10(2), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:480-:d:131397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stuermer, Martin, 2018. "150 Years Of Boom And Bust: What Drives Mineral Commodity Prices?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 702-717, April.
    2. Stuermer, Martin, 2017. "Industrialization and the demand for mineral commodities," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 16-27.
    3. Luis Montiel & Roussos Dimitrakopoulos, 2017. "A heuristic approach for the stochastic optimization of mine production schedules," Journal of Heuristics, Springer, vol. 23(5), pages 397-415, October.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Steiner, Gerald & Geissler, Bernhard & Watson, Ingrid & Mew, Michael C., 2015. "Efficiency developments in phosphate rock mining over the last three decades," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 235-245.
    6. Solow, Robert, 1993. "An almost practical step toward sustainability," Resources Policy, Elsevier, vol. 19(3), pages 162-172, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip Metzger, 2023. "Economics of In-Space Industry and Competitiveness of Lunar-Derived Rocket Propellant," Papers 2303.09011, arXiv.org.
    2. Gerald Steiner & Bernhard Geissler, 2018. "Sustainable Mineral Resource Management—Insights into the Case of Phosphorus," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    3. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    4. Roland W. Scholz & Gerald Steiner, 2022. "The role of transdisciplinarity for mineral economics and mineral resource management: coping with fallacies related to phosphorus in science and practice," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 745-763, December.
    5. Gedam, Vidyadhar V. & Raut, Rakesh D. & Lopes de Sousa Jabbour, Ana Beatriz & Agrawal, Nishant, 2021. "Moving the circular economy forward in the mining industry: Challenges to closed-loop in an emerging economy," Resources Policy, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacks, David S. & Stuermer, Martin, 2020. "What drives commodity price booms and busts?," Energy Economics, Elsevier, vol. 85(C).
    2. Baffes,John & Kabundi,Alain Ntumba & Nagle,Peter Stephen Oliver & Ohnsorge,Franziska Lieselotte, 2018. "The role of major emerging markets in global commodity demand," Policy Research Working Paper Series 8495, The World Bank.
    3. Fernandez, Viviana, 2018. "Price and income elasticity of demand for mineral commodities," Resources Policy, Elsevier, vol. 59(C), pages 160-183.
    4. Martin Stuermer, 2022. "Non-renewable resource extraction over the long term: empirical evidence from global copper production," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 617-625, December.
    5. Friedrich -W. Wellmer & Roland W. Scholz, 2017. "Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(2), pages 73-93, July.
    6. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    7. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    8. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    9. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    10. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    11. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    12. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    13. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    14. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    15. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    16. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    17. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    18. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.
    19. Suleyman Basak & Georgy Chabakauri, 2012. "Dynamic Hedging in Incomplete Markets: A Simple Solution," The Review of Financial Studies, Society for Financial Studies, vol. 25(6), pages 1845-1896.
    20. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:480-:d:131397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.