IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v29y2024i4d10.1007_s11027-024-10124-6.html
   My bibliography  Save this article

Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: a comprehensive review

Author

Listed:
  • Hongyun Zheng

    (Huazhong Agricultural University)

  • Wanglin Ma

    (Lincoln University)

  • Quan He

    (Lincoln University)

Abstract

This study reviews the literature published between 2013 and 2023 to comprehensively understand the consequences of adopting climate-smart agricultural (CSA) practices. We categorize the literature into three categories based on the scopes of climate-smart agriculture: (a) sustainably increase agricultural productivity and incomes; (b) adapt and build the resilience of people and agrifood systems to climate change; and (c) reduce or where possible, avoid greenhouse gas emissions. The review demonstrates that adopting CSA practices, in many instances, improves farm productivity and incomes. This increase manifests in increasing crop yields and productivity, income and profitability, and technical and resource use efficiency. Moreover, adopting CSA practices reinforces the resilience of farmers and agrifood systems by promoting food consumption, dietary diversity, and food security and mitigating production risks and vulnerabilities. Adopting CSA practices is environmentally feasible as it reduces greenhouse gas emissions and improves soil quality. An integrative strategy encompassing diverse CSA practices portends an optimized avenue to chart a trajectory towards agrifood systems fortified against climatic change.

Suggested Citation

  • Hongyun Zheng & Wanglin Ma & Quan He, 2024. "Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: a comprehensive review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(4), pages 1-38, April.
  • Handle: RePEc:spr:masfgc:v:29:y:2024:i:4:d:10.1007_s11027-024-10124-6
    DOI: 10.1007/s11027-024-10124-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-024-10124-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-024-10124-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Chunxiao & Liu, Ruifeng & Oxley, Oxley & Ma, Hengyun, 2018. "The adoption and impact of engineering-type measures to address climate change: evidence from the major grain-producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    2. Soul‐kifouly G. Midingoyi & Menale Kassie & Beatrice Muriithi & Gracious Diiro & Sunday Ekesi, 2019. "Do Farmers and the Environment Benefit from Adopting Integrated Pest Management Practices? Evidence from Kenya," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(2), pages 452-470, June.
    3. Acosta-Alba, Ivonne & Chia, Eduardo & Andrieu, Nadine, 2019. "The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels," Agricultural Systems, Elsevier, vol. 171(C), pages 155-170.
    4. Arslan, Aslihan & Belotti, Federico & Lipper, Leslie, 2017. "Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania," Food Policy, Elsevier, vol. 69(C), pages 68-81.
    5. Thanh Tam Ho & Koji Shimada, 2019. "The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam," Agriculture, MDPI, vol. 9(5), pages 1-20, May.
    6. Wouterse, Fleur & Andrijevic, Marina & Schaeffer, Michiel, 2022. "The microeconomics of adaptation: Evidence from smallholders in Ethiopia and Niger," World Development, Elsevier, vol. 154(C).
    7. Wang, Yangjie & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2018. "Mitigating rice production risks from drought through improving irrigation infrastructure and management in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(01), January.
    8. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    9. repec:fpr:export:1337 is not listed on IDEAS
    10. Md Kamrul Hasan & Sam Desiere & Marijke D’Haese & Lalit Kumar, 2018. "Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 1073-1088, August.
    11. Carlo Carraro, 2016. "Climate change: scenarios, impacts, policy, and development opportunities," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 149-157, November.
    12. Salvatore Di Falco & Marcella Veronesi, 2014. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(4), pages 553-577, April.
    13. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    14. Mutenje, Munyaradzi Junia & Farnworth, Cathy Rozel & Stirling, Clare & Thierfelder, Christian & Mupangwa, Walter & Nyagumbo, Isaiah, 2019. "A cost-benefit analysis of climate-smart agriculture options in Southern Africa: Balancing gender and technology," Ecological Economics, Elsevier, vol. 163(C), pages 126-137.
    15. Danso-Abbeam, Gideon & Baiyegunhi, Lloyd J.S., 2018. "Welfare impact of pesticides management practices among smallholder cocoa farmers in Ghana," Technology in Society, Elsevier, vol. 54(C), pages 10-19.
    16. Junfang Zhao & Dongsheng Liu & Ruixi Huang, 2023. "A Review of Climate-Smart Agriculture: Recent Advancements, Challenges, and Future Directions," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    17. Aggarwal, Pramod & Joshi, Pramod Kumar & Pal, Barun Deb & Taneja, Garima & Tyagi, N.K., 2014. "Farmers’ preferences for climate-smart agriculture an assessment in the Indo-Gangetic plain:," IFPRI discussion papers 1337, International Food Policy Research Institute (IFPRI).
    18. Wanglin Ma & Puneet Vatsa & Hongyun Zheng & Yanzhi Guo, 2022. "Does online food shopping boost dietary diversity? Application of an endogenous switching model with a count outcome variable," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-19, December.
    19. Amadu, Festus O. & Miller, Daniel C. & McNamara, Paul E., 2020. "Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi," Ecological Economics, Elsevier, vol. 167(C).
    20. Do, Huu-Luat & Ho, Thong Quoc, 2022. "Climate change adaptation strategies and shrimp aquaculture: Empirical evidence from the Mekong Delta of Vietnam," Ecological Economics, Elsevier, vol. 196(C).
    21. Yusuke Kuwayama & Alexandra Thompson & Richard Bernknopf & Benjamin Zaitchik & Peter Vail, 2019. "Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 193-210.
    22. Jikun Huang & Yangjie Wang & Jinxia Wang, 2015. "Farmers' Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 602-617.
    23. Fentie, Amare & Beyene, Abebe D., 2019. "Climate-smart agricultural practices and welfare of rural smallholders in Ethiopia: Does planting method matter?," Land Use Policy, Elsevier, vol. 85(C), pages 387-396.
    24. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.
    25. Chunxiao Song & Ruifeng Liu & Les Oxley & Hengyun Ma, 2018. "The adoption and impact of engineering‐type measures to address climate change: evidence from the major grain‐producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), pages 608-635, October.
    26. Khatri-Chhetri, Arun & Aggarwal, P.K. & Joshi, P.K. & Vyas, S., 2017. "Farmers' prioritization of climate-smart agriculture (CSA) technologies," Agricultural Systems, Elsevier, vol. 151(C), pages 184-191.
    27. Garima Taneja & Barun Deb Pal & Pramod K. Joshi & Pramod K. Aggarwal & N. K. Tyagi, 2014. "Farmers’ Preferences for Climate-Smart Agriculture: An Assessment in the Indo-Gangetic Plain," Working Papers id:5806, eSocialSciences.
    28. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    29. Zizinga, Alex & Mwanjalolo, Jackson-Gilbert Majaliwa & Tietjen, Britta & Bedadi, Bobe & Pathak, Himanshu & Gabiri, Geofrey & Beesigamukama, Dennis, 2022. "Climate change and maize productivity in Uganda: Simulating the impacts and alleviation with climate smart agriculture practices," Agricultural Systems, Elsevier, vol. 199(C).
    30. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    31. Ogada, Maurice Juma & Rao, Elizaphan J.O. & Radeny, Maren & Recha, John W. & Solomon, Dawit, 2020. "Climate-smart agriculture, household income and asset accumulation among smallholder farmers in the Nyando basin of Kenya," World Development Perspectives, Elsevier, vol. 18(C).
    32. Nawab Khan & Jiliang Ma & Hazem S. Kassem & Rizwan Kazim & Ram L. Ray & Muhammad Ihtisham & Shemei Zhang, 2022. "Rural Farmers’ Cognition and Climate Change Adaptation Impact on Cash Crop Productivity: Evidence from a Recent Study," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    33. Teklewold, Hailemariam & Gebrehiwot, Tagel & Bezabih, Mintewab, 2019. "Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia," World Development, Elsevier, vol. 122(C), pages 38-53.
    34. Abyiot Teklu & Belay Simane & Mintewab Bezabih, 2022. "Effectiveness of Climate-Smart Agriculture Innovations in Smallholder Agriculture System in Ethiopia," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    35. Sergei Schaub & Jaboury Ghazoul & Robert Huber & Wei Zhang & Adelaide Sander & Charles Rees & Simanti Banerjee & Robert Finger, 2023. "The role of behavioural factors and opportunity costs in farmers' participation in voluntary agri‐environmental schemes: A systematic review," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 617-660, September.
    36. Robert Ugochukwu Onyeneke & Christiana Ogonna Igberi & Jonathan Ogbeni Aligbe & Felix Abinotam Iruo & Mark Umunna Amadi & Stanley Chidi Iheanacho & Emmanuel Emeka Osuji & Jane Munonye & Christian Uwad, 2020. "Climate change adaptation actions by fish farmers: evidence from the Niger Delta Region of Nigeria," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), pages 347-375, April.
    37. Muhammad Ali Imran & Asghar Ali & Muhammad Ashfaq & Sarfraz Hassan & Richard Culas & Chunbo Ma, 2018. "Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    38. Sain, Gustavo & Loboguerrero, Ana María & Corner-Dolloff, Caitlin & Lizarazo, Miguel & Nowak, Andreea & Martínez-Barón, Deissy & Andrieu, Nadine, 2017. "Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala," Agricultural Systems, Elsevier, vol. 151(C), pages 163-173.
    39. Sarr, Mare & Bezabih Ayele, Mintewab & Kimani, Mumbi E. & Ruhinduka, Remidius, 2021. "Who benefits from climate-friendly agriculture? The marginal returns to a rainfed system of rice intensification in Tanzania," World Development, Elsevier, vol. 138(C).
    40. Onyeneke, Robert Ugochukwu & Igberi, Christiana Ogonna, 2020. "Climate change adaptation actions by fish farmers: evidence from the Niger Delta Region of Nigeria," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    41. Sun, Shuang & Yang, Xiaoguang & Lin, Xiaomao & Sassenrath, Gretchen F. & Li, Kenan, 2018. "Climate-smart management can further improve winter wheat yield in China," Agricultural Systems, Elsevier, vol. 162(C), pages 10-18.
    42. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    43. Noah Miller & Jesse Tack & Jason Bergtold, 2021. "The Impacts of Warming Temperatures on US Sorghum Yields and the Potential for Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1742-1758, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilong Xi & Xiaohui Wang & Kejun Lin, 2025. "The Impact of Carbon Emissions Trading Pilot Policies on High-Quality Agricultural Development: An Empirical Assessment Using Double Machine Learning," Sustainability, MDPI, vol. 17(5), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vatsa, Puneet & Ma, Wanglin & Zheng, Hongyun & Li, Junpeng, 2023. "Climate-smart agricultural practices for promoting sustainable agrifood production: Yield impacts and implications for food security," Food Policy, Elsevier, vol. 121(C).
    2. Junpeng Li & Wanglin Ma & Huanyu Zhu, 2024. "A systematic literature review of factors influencing the adoption of climate-smart agricultural practices," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(1), pages 1-38, January.
    3. Bhavani Prasad Thottadi & S. P. Singh, 2024. "Climate-smart agriculture (CSA) adaptation, adaptation determinants and extension services synergies: a systematic review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(3), pages 1-29, March.
    4. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Marye Belete, 2022. "Evaluating the practices of climate-smart agriculture sustainability in Ethiopia using geocybernetic assessment matrix," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 724-764, January.
    5. Mao, Hui & Sun, Zhenkai & Chai, Anyuan & Fang, Lan & Shi, Chaoqian, 2025. "Extreme Weather, agricultural insurance and farmer's climate adaptation technologies adoption in China," Ecological Economics, Elsevier, vol. 228(C).
    6. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    7. Mercy Nyambura Mburu & John Mburu & Rose Nyikal & Amin Mugera & Asaah Ndambi, 2024. "Assessment of socio-economic determinants and impacts of climate-smart feeding practices in the Kenyan dairy sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-25, June.
    8. Rodríguez-Barillas, María & Klerkx, Laurens & Poortvliet, P. Marijn, 2024. "What determines the acceptance of Climate Smart Technologies? The influence of farmers' behavioral drivers in connection with the policy environment," Agricultural Systems, Elsevier, vol. 213(C).
    9. Asif Sardar & Adiqa K. Kiani & Yasemin Kuslu, 2021. "Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10119-10140, July.
    10. Abrham Belay & Alisher Mirzabaev & John W. Recha & Christopher Oludhe & Philip M. Osano & Zerihun Berhane & Lydia A. Olaka & Yitagesu T. Tegegne & Teferi Demissie & Chrispinus Mutsami & Dawit Solomon, 2024. "Does climate-smart agriculture improve household income and food security? Evidence from Southern Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16711-16738, July.
    11. Viet Ha Trinh Thi & Wenqi Zhou, 2025. "Investigating the Technical Efficiency and Balanced Development of Climate-Smart Agriculture in Northeast China," Land, MDPI, vol. 14(3), pages 1-17, March.
    12. Mohamed Rafik Noor Mohamed Qureshi & Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Shubhendu Singh & Naif Almakayeel, 2022. "Assessment of the Climate-Smart Agriculture Interventions towards the Avenues of Sustainable Production–Consumption," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    13. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    14. Bairagi, Subir & Bhandari, Humnath & Kumar Das, Subrata & Mohanty, Samarendu, 2021. "Flood-tolerant rice improves climate resilience, profitability, and household consumption in Bangladesh," Food Policy, Elsevier, vol. 105(C).
    15. Fissha Asmare & Jūratė Jaraitė & Andrius Kažukauskas, 2022. "Climate change adaptation and productive efficiency of subsistence farming: A bias‐corrected panel data stochastic frontier approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(3), pages 739-760, September.
    16. Nauges, Céline & Bougherara, Douadia & Koussoubé, Estelle, 2021. "Fertilizer use and risk: New evidence from Sub-Saharan Africa," TSE Working Papers 21-1266, Toulouse School of Economics (TSE).
    17. Pratap S. Birthal & Jaweriah Hazrana & Digvijay S. Negi, 2021. "Effectiveness of Farmers’ Risk Management Strategies in Smallholder Agriculture: Evidence from India," Climatic Change, Springer, vol. 169(3), pages 1-35, December.
    18. Oumer, Ali M. & Burton, Michael, 2018. "Drivers and Synergies in the Adoption of Sustainable Agricultural Intensification Practices: A Dynamic Perspective," 2018 Annual Meeting, August 5-7, Washington, D.C. 273871, Agricultural and Applied Economics Association.
    19. Sun Ling Wang & Eldon Ball & Richard Nehring & Ryan Williams & Truong Chau, 2018. "Impacts of Climate Change and Extreme Weather on US Agricultural Productivity: Evidence and Projection," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 41-75, National Bureau of Economic Research, Inc.
    20. Wang, Yangjie & Huang, Jikun & Wang, Jinxia & Findlay, Christopher, 2018. "Mitigating rice production risks from drought through improving irrigation infrastructure and management in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(01), January.

    More about this item

    Keywords

    Climate-smart agricultural practices; Effect evaluation; Technology adoption;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:29:y:2024:i:4:d:10.1007_s11027-024-10124-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.