IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v10y2005i4p675-691.html
   My bibliography  Save this article

Do Hydroelectric Dams Mitigate Global Warming? The Case of Brazil's CuruÁ-una Dam

Author

Listed:
  • Philip Fearnside

Abstract

No abstract is available for this item.

Suggested Citation

  • Philip Fearnside, 2005. "Do Hydroelectric Dams Mitigate Global Warming? The Case of Brazil's CuruÁ-una Dam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(4), pages 675-691, October.
  • Handle: RePEc:spr:masfgc:v:10:y:2005:i:4:p:675-691
    DOI: 10.1007/s11027-005-7303-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-005-7303-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-005-7303-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fearnside, Philip M., 2002. "Time preference in global warming calculations: a proposal for a unified index," Ecological Economics, Elsevier, vol. 41(1), pages 21-31, April.
    2. Philip Fearnside & Daniel Lashof & Pedro Moura-Costa, 2000. "Accounting for time in Mitigating Global Warming through land-use change and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 239-270, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bianchini, Irineu & da Cunha Santino, Marcela Bianchessi, 2011. "Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation," Ecological Modelling, Elsevier, vol. 222(7), pages 1263-1271.
    2. Fearnside, Philip M., 2016. "Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry," World Development, Elsevier, vol. 77(C), pages 48-65.
    3. Shirley, Rebekah G. & Word, Jettie, 2018. "Rights, rivers and renewables: Lessons from hydropower conflict in Borneo on the role of cultural politics in energy planning for Small Island Developing States," Utilities Policy, Elsevier, vol. 55(C), pages 189-199.
    4. Denielle Perry & Ian Harrison & Stephannie Fernandes & Sarah Burnham & Alana Nichols, 2021. "Global Analysis of Durable Policies for Free-Flowing River Protections," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    5. Thais Vilela & John Reid, 2017. "Improving hydropower choices via an online and open access tool," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-12, June.
    6. Almeida Prado, Fernando & Athayde, Simone & Mossa, Joann & Bohlman, Stephanie & Leite, Flavia & Oliver-Smith, Anthony, 2016. "How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1132-1136.
    7. Emily Benton Hite, 2018. "Political ecology of Costa Rica’s climate policy: contextualizing climate governance," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 8(4), pages 469-476, December.
    8. Walmsley, Michael R.W. & Walmsley, Timothy G. & Atkins, Martin J. & Kamp, Peter J.J. & Neale, James R., 2014. "Minimising carbon emissions and energy expended for electricity generation in New Zealand through to 2050," Applied Energy, Elsevier, vol. 135(C), pages 656-665.
    9. Demarty, M. & Bastien, J., 2011. "GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements," Energy Policy, Elsevier, vol. 39(7), pages 4197-4206, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenzen, Manfred & Dey, Christopher J. & Murray, Shauna A., 2004. "Historical accountability and cumulative impacts: the treatment of time in corporate sustainability reporting," Ecological Economics, Elsevier, vol. 51(3-4), pages 237-250, December.
    2. Marshall, Liz & Kelly, Alexia, 2010. "The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate," MPRA Paper 27326, University Library of Munich, Germany.
    3. Miguel Brandão & Roland Clift & Llorenç Milà i Canals & Lauren Basson, 2010. "A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK," Sustainability, MDPI, vol. 2(12), pages 1-30, December.
    4. Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
    5. Philip Fearnside, 2009. "Carbon benefits from Amazonian forest reserves: leakage accounting and the value of time," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 557-567, August.
    6. Michael Dutschke, 2007. "CDM Forestry and the Ultimate Objective of the Climate Convention," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 275-302, February.
    7. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    9. Fearnside, Philip M., 2001. "Saving tropical forests as a global warming countermeasure: an issue that divides the environmental movement," Ecological Economics, Elsevier, vol. 39(2), pages 167-184, November.
    10. Miko Kirschbaum, 2006. "Temporary Carbon Sequestration Cannot Prevent Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1151-1164, September.
    11. Hezri, Adnan A. & Dovers, Stephen R., 2006. "Sustainability indicators, policy and governance: Issues for ecological economics," Ecological Economics, Elsevier, vol. 60(1), pages 86-99, November.
    12. Nahuel Bautista & Bruno D. V. Marino & J. William Munger, 2021. "Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest," Land, MDPI, vol. 10(2), pages 1-22, February.
    13. Olivia Cintas & Göran Berndes & Annette L. Cowie & Gustaf Egnell & Hampus Holmström & Göran I. Ågren, 2016. "The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 351-369, May.
    14. Suzi Kerr, 2003. "Indigenous Forests and Forest Sink Policy in New Zealand," Working Papers 03_15, Motu Economic and Public Policy Research.
    15. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    16. Philip Fearnside, 2015. "Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio Dam as an example of the need for change," Climatic Change, Springer, vol. 131(4), pages 575-589, August.
    17. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    18. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    19. Sumaila, Ussif R. & Walters, Carl, 2005. "Intergenerational discounting: a new intuitive approach," Ecological Economics, Elsevier, vol. 52(2), pages 135-142, January.
    20. Heli Lu & Guifang Liu, 2015. "Opportunity Costs of Carbon Emissions Stemming from Changes in Land Use," Sustainability, MDPI, vol. 7(4), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:10:y:2005:i:4:p:675-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.