IDEAS home Printed from
   My bibliography  Save this article

Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches


  • Annie Levasseur


  • Pascal Lesage
  • Manuele Margni
  • Miguel Brandão
  • Réjean Samson


In order to properly assess the climate impact of temporary carbon sequestration and storage projects through land-use, land-use change and forestry (LULUCF), it is important to consider their temporal aspect. Dynamic life cycle assessment (dynamic LCA) was developed to account for time while assessing the potential impact of life cycle greenhouse gases (GHG) emissions. In this paper, the dynamic LCA approach is applied to a temporary carbon sequestration project through afforestation, and the results are compared with those of the two principal ton-year approaches: the Moura-Costa and the Lashof methods. The dynamic LCA covers different scenarios, which are distinguished by the assumptions regarding what happens at the end of the sequestration period. In order to ascertain the degree of compensation of an emission through a LULUCF project, the ratio of the cumulative impact of the project to the cumulative impact of a baseline GHG emission is calculated over time. This ratio tends to 1 when assuming that, after the end of the sequestration project period, the forest is maintained indefinitely. Conversely, the ratio tends to much lower values in scenarios where part of the carbon is released back to the atmosphere due to e.g. fire or forest exploitation. The comparison of dynamic LCA with the ton-year approaches shows that it is a more flexible approach as it allows the consideration of every life cycle stage of the project and it gives decision makers the opportunity to test the sensitivity of the results to the choice of different time horizons. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:759-776
    DOI: 10.1007/s10584-012-0473-x

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fearnside, Philip M., 2002. "Time preference in global warming calculations: a proposal for a unified index," Ecological Economics, Elsevier, vol. 41(1), pages 21-31, April.
    2. Ian Noble & R. J. Scholes, 2001. "Sinks and the Kyoto Protocol," Climate Policy, Taylor & Francis Journals, vol. 1(1), pages 5-25, March.
    3. Feng, Hongli, 2005. "The dynamics of carbon sequestration and alternative carbon accounting, with an application to the upper Mississippi River Basin," Ecological Economics, Elsevier, vol. 54(1), pages 23-35, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Harald Dyckhoff & Tarek Kasah, 2014. "Time Horizon and Dominance in Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 799-808, December.
    2. Pierobon, Francesca & Zanetti, Michela & Grigolato, Stefano & Sgarbossa, Andrea & Anfodillo, Tommaso & Cavalli, Raffaele, 2015. "Life cycle environmental impact of firewood production – A case study in Italy," Applied Energy, Elsevier, vol. 150(C), pages 185-195.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:759-776. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.