IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v18y2014i6p799-808.html
   My bibliography  Save this article

Time Horizon and Dominance in Dynamic Life Cycle Assessment

Author

Listed:
  • Harald Dyckhoff
  • Tarek Kasah

Abstract

type="main"> Temporal aspects have traditionally not been recognized adequately in life cycle assessment (LCA). The dynamic LCA model recently proposed offers a significant step forward in the dynamic assessment of global warming impacts. The results obtained with dynamic LCA are highly sensitive to the choice of a time horizon. Therefore, decision making between alternative systems can be critical because conclusions are dependent on the specific time horizon. In this article, we develop a decision-making methodology based on the concept of time dominance. We introduce instantaneous and cumulative time dominance criteria to the dynamic LCA context and argue why the dominance of an alternative should also imply preference. Our approach allows for the rejection of certain alternatives without the determination of a specific time horizon. The number of decision-relevant alternatives can thereby be reduced and the decision problem facilitated. We demonstrate our methodology by means of a case study of end-of-life alternatives for a wooden chair derived from the original authors of dynamic LCA and discuss the implications and limitations of the approach. The methodology based on time dominance criteria is supplementary to the dynamic LCA model, but does not substitute it. The overall value of this article stretches beyond LCA onto more general assessments of global warming, for example, in policy where the choice of a time horizon is equally significant.

Suggested Citation

  • Harald Dyckhoff & Tarek Kasah, 2014. "Time Horizon and Dominance in Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 799-808, December.
  • Handle: RePEc:bla:inecol:v:18:y:2014:i:6:p:799-808
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jiec.12131
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fearnside, Philip M., 2002. "Time preference in global warming calculations: a proposal for a unified index," Ecological Economics, Elsevier, vol. 41(1), pages 21-31, April.
    2. Ekern, Steinar, 1981. "Time Dominance Efficiency Analysis," Journal of Finance, American Finance Association, vol. 36(5), pages 1023-1034, December.
    3. Christian Gollier, 2010. "Debating about the Discount Rate:The Basic Economic Ingredients," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 11(s1), pages 38-55, May.
    4. Partha Dasgupta, 2008. "Discounting climate change," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 141-169, December.
    5. Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
    6. Annie Levasseur & Pascal Lesage & Manuele Margni & Réjean Samson, 2013. "Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 117-128, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henryson, Kajsa & Sundberg, Cecilia & Kätterer, Thomas & Hansson, Per-Anders, 2018. "Accounting for long-term soil fertility effects when assessing the climate impact of crop cultivation," Agricultural Systems, Elsevier, vol. 164(C), pages 185-192.
    2. Alexandre Charpentier Poncelet & Christoph Helbig & Philippe Loubet & Antoine Beylot & Stéphanie Muller & Jacques Villeneuve & Bertrand Laratte & Andrea Thorenz & Axel Tuma & Guido Sonnemann, 2021. "Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1177-1193, October.
    3. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    2. Nicoleta Anca Matei & Claudio Zoli, 2012. "Restricted Finite Time Dominance," Working Papers 30/2012, University of Verona, Department of Economics.
    3. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    4. Min Gong & David Krantz & Elke Weber, 2014. "Why Chinese discount future financial and environmental gains but not losses more than Americans," Journal of Risk and Uncertainty, Springer, vol. 49(2), pages 103-124, October.
    5. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    6. Rintaro Yamaguchi, 2019. "Intergenerational Discounting with Intragenerational Inequality in Consumption and the Environment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 957-972, August.
    7. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    8. John A. List, 2024. "Optimally generate policy-based evidence before scaling," Nature, Nature, vol. 626(7999), pages 491-499, February.
    9. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    10. Jindrich Matousek & Tomas Havranek & Zuzana Irsova, 2022. "Individual discount rates: a meta-analysis of experimental evidence," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 318-358, February.
    11. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    12. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, risk and inequality: A general approach," Journal of Public Economics, Elsevier, vol. 128(C), pages 34-49.
    13. Daniel Johansson, 2011. "Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles," Climatic Change, Springer, vol. 108(1), pages 107-134, September.
    14. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    15. Hänsel, Martin C. & Quaas, Martin F., 2018. "Intertemporal Distribution, Sufficiency, and the Social Cost of Carbon," Ecological Economics, Elsevier, vol. 146(C), pages 520-535.
    16. Yildiz, Özgür, 2014. "Lehren aus der Verhaltensökonomik für die Gestaltung umweltpolitischer Maßnahmen [Lessons from behavioral economics for the design of environmental policy measures]," MPRA Paper 59360, University Library of Munich, Germany.
    17. Giovanna Croxatto Vega & Joshua Sohn & Sander Bruun & Stig Irving Olsen & Morten Birkved, 2019. "Maximizing Environmental Impact Savings Potential through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    18. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    19. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    20. Holger Strulik, 2021. "Hyperbolic discounting and the time‐consistent solution of three canonical environmental problems," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 23(3), pages 462-486, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:18:y:2014:i:6:p:799-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.