IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v17y2013i1p117-128.html
   My bibliography  Save this article

Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment

Author

Listed:
  • Annie Levasseur
  • Pascal Lesage
  • Manuele Margni
  • Réjean Samson

Abstract

A growing tendency in policy making and carbon footprint estimation gives value to temporary carbon storage in biomass products or to delayed greenhouse gas (GHG) emissions. Some life cycle‐based methods, such as the British publicly available specification (PAS) 2050 or the recently published European Commission's International Reference Life Cycle Data System (ILCD) Handbook, address this issue. This article shows the importance of consistent consideration of biogenic carbon and timing of GHG emissions in life cycle assessment (LCA) and carbon footprint analysis. We use a fictitious case study assessing the life cycle of a wooden chair for four end‐of‐life scenarios to compare different approaches: traditional LCA with and without consideration of biogenic carbon, the PAS 2050 and ILCD Handbook methods, and a dynamic LCA approach. Reliable results require accounting for the timing of every GHG emission, including biogenic carbon flows, as soon as a benefit is given for temporarily storing carbon or delaying GHG emissions. The conclusions of a comparative LCA can change depending on the time horizon chosen for the analysis. The dynamic LCA approach allows for a consistent assessment of the impact, through time, of all GHG emissions (positive) and sequestration (negative). The dynamic LCA is also a valuable approach for decision makers who have to understand the sensitivity of the conclusions to the chosen time horizon.

Suggested Citation

  • Annie Levasseur & Pascal Lesage & Manuele Margni & Réjean Samson, 2013. "Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 117-128, February.
  • Handle: RePEc:bla:inecol:v:17:y:2013:i:1:p:117-128
    DOI: 10.1111/j.1530-9290.2012.00503.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2012.00503.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2012.00503.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Balance and saving of GHG emissions in thermochemical biorefineries," Applied Energy, Elsevier, vol. 147(C), pages 444-455.
    2. Giovanna Croxatto Vega & Joshua Sohn & Sander Bruun & Stig Irving Olsen & Morten Birkved, 2019. "Maximizing Environmental Impact Savings Potential through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    3. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    4. Galimshina, Alina & Moustapha, Maliki & Hollberg, Alexander & Padey, Pierryves & Lasvaux, Sébastien & Sudret, Bruno & Habert, Guillaume, 2022. "Bio-based materials as a robust solution for building renovation: A case study," Applied Energy, Elsevier, vol. 316(C).
    5. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    6. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Harald Dyckhoff & Tarek Kasah, 2014. "Time Horizon and Dominance in Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 799-808, December.
    8. Braud, L. & McDonnell, K. & Murphy, F., 2023. "Environmental life cycle assessment of algae systems: Critical review of modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    9. Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    11. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    12. Vance, C. & Sweeney, J. & Murphy, F., 2022. "Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    14. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    15. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.
    16. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    17. Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.
    18. Shu Su & Jingyi Ju & Yujie Ding & Jingfeng Yuan & Peng Cui, 2022. "A Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations," IJERPH, MDPI, vol. 19(21), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:1:p:117-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.