IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46305-9.html
   My bibliography  Save this article

Strategies for robust renovation of residential buildings in Switzerland

Author

Listed:
  • Alina Galimshina

    (ETH Zürich, Institute of Construction and Infrastructure Management (IBI), Chair of Sustainable Construction)

  • Maliki Moustapha

    (ETH Zürich, Institute of Structural Engineering (IBK), Chair of Risk, Safety and Uncertainty Quantification)

  • Alexander Hollberg

    (Chalmers University of Technology, Department of Architecture and Civil Engineering)

  • Sébastien Lasvaux

    (University of Applied Sciences of Western Switzerland (HES-SO), School of Business and Management Vaud (HEIG-VD), Institute of Energies (IE))

  • Bruno Sudret

    (ETH Zürich, Institute of Structural Engineering (IBK), Chair of Risk, Safety and Uncertainty Quantification)

  • Guillaume Habert

    (ETH Zürich, Institute of Construction and Infrastructure Management (IBI), Chair of Sustainable Construction)

Abstract

Building renovation is urgently required to reduce the environmental impact associated with the building stock. Typically, building renovation is performed by envelope insulation and/or changing the fossil-based heating system. The goal of this paper is to provide strategies for robust renovation considering uncertainties on the future evolution of climate, energy grid, and user behaviors, amongst others by applying life cycle assessment and life cycle cost analysis. The study includes identifying optimal renovation options for the envelope and heating systems for building representatives from all construction periods that are currently in need of renovation in Switzerland. The findings emphasize the paramount importance of heating system replacements across all construction periods. Notably, when incorporating bio-based insulation materials, a balance emerges between environmental impact reduction and low energy operation costs. This facilitates robust, equitable, and low-carbon transformations in Switzerland and similar Northern European contexts while avoiding a carbon spike due to the embodied carbon of the renovation.

Suggested Citation

  • Alina Galimshina & Maliki Moustapha & Alexander Hollberg & Sébastien Lasvaux & Bruno Sudret & Guillaume Habert, 2024. "Strategies for robust renovation of residential buildings in Switzerland," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46305-9
    DOI: 10.1038/s41467-024-46305-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46305-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46305-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chantrelle, Fanny Pernodet & Lahmidi, Hicham & Keilholz, Werner & Mankibi, Mohamed El & Michel, Pierre, 2011. "Development of a multicriteria tool for optimizing the renovation of buildings," Applied Energy, Elsevier, vol. 88(4), pages 1386-1394, April.
    2. Rabbat, Christelle & Awad, Sary & Villot, Audrey & Rollet, Delphine & Andrès, Yves, 2022. "Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Ben-Alon, L. & Loftness, V. & Harries, K.A. & Cochran Hameen, E., 2021. "Life cycle assessment (LCA) of natural vs conventional building assemblies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Galimshina, Alina & Moustapha, Maliki & Hollberg, Alexander & Padey, Pierryves & Lasvaux, Sébastien & Sudret, Bruno & Habert, Guillaume, 2022. "Bio-based materials as a robust solution for building renovation: A case study," Applied Energy, Elsevier, vol. 316(C).
    5. Peter Berrill & Eric J. H. Wilson & Janet L. Reyna & Anthony D. Fontanini & Edgar G. Hertwich, 2022. "Decarbonization pathways for the residential sector in the United States," Nature Climate Change, Nature, vol. 12(8), pages 712-718, August.
    6. Annie Levasseur & Pascal Lesage & Manuele Margni & Réjean Samson, 2013. "Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 117-128, February.
    7. Shannon M. Lloyd & Robert Ries, 2007. "Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 161-179, January.
    8. Walker, Linus & Hischier, Illias & Schlueter, Arno, 2022. "Scenario-based robustness assessment of building system life cycle performance," Applied Energy, Elsevier, vol. 311(C).
    9. Abhijeet Mishra & Florian Humpenöder & Galina Churkina & Christopher P. O. Reyer & Felicitas Beier & Benjamin Leon Bodirsky & Hans Joachim Schellnhuber & Hermann Lotze-Campen & Alexander Popp, 2022. "Land use change and carbon emissions of a transformation to timber cities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Yu Qian Ang & Zachary Michael Berzolla & Samuel Letellier-Duchesne & Christoph F. Reinhart, 2023. "Carbon reduction technology pathways for existing buildings in eight cities," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Timothy M. Lenton & Johan Rockström & Owen Gaffney & Stefan Rahmstorf & Katherine Richardson & Will Steffen & Hans Joachim Schellnhuber, 2019. "Climate tipping points — too risky to bet against," Nature, Nature, vol. 575(7784), pages 592-595, November.
    12. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    13. Galina Churkina & Alan Organschi & Christopher P. O. Reyer & Andrew Ruff & Kira Vinke & Zhu Liu & Barbara K. Reck & T. E. Graedel & Hans Joachim Schellnhuber, 2020. "Buildings as a global carbon sink," Nature Sustainability, Nature, vol. 3(4), pages 269-276, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Lan & Alice Favero & Yuan Yao & Robert O. Mendelsohn & Hannah Szu-Han Wang, 2025. "Global land and carbon consequences of mass timber products," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Galimshina, Alina & Moustapha, Maliki & Hollberg, Alexander & Padey, Pierryves & Lasvaux, Sébastien & Sudret, Bruno & Habert, Guillaume, 2022. "Bio-based materials as a robust solution for building renovation: A case study," Applied Energy, Elsevier, vol. 316(C).
    3. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    4. Rodrigues, Carla & Rodrigues, Eugénio & S. Fernandes, Marco & Tadeu, Sérgio, 2024. "Prospective life cycle approach to buildings' adaptation for future climate and decarbonization scenarios," Applied Energy, Elsevier, vol. 372(C).
    5. Huang, Jing & Han, Wenjing & Zhang, Zhengfeng & Ning, Shanshan & Zhang, Xiaoling, 2024. "The decoupling relationship between land use efficiency and carbon emissions in China: An analysis using the Socio-Ecological Systems (SES) framework," Land Use Policy, Elsevier, vol. 138(C).
    6. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    7. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    8. Shiying Zhang & Salla Koskela & Halvar Meinhard & Paavo Penttilä & Muhammad Awais & Markus B. Linder & Shennan Wang & Lauri Rautkari, 2025. "Multiscale interface engineering enables strong and water resistant wood bonding," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Hefan Zheng & Rongjie Zhang & Xinru Yin & Jing Wu, 2025. "Unused housing in urban China and its carbon emission impact," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Zhang, Xiaoyi & Liu, Yan & Li, Yanxue & Lv, Xiaoyu & Xiao, Fu & Gao, Weijun, 2024. "Analyzing variability and coordinated demand management for various flexible integrations of residential distributed energy resources," Renewable Energy, Elsevier, vol. 237(PA).
    11. Alperen Yayla & Adam R. Mason & Junyang Wang & Stijn Ewijk & Rupert J. Myers, 2025. "Global wood harvest is sufficient for climate-friendly transitions to timber cities," Nature Sustainability, Nature, vol. 8(9), pages 1013-1025, September.
    12. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    13. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2023. "Increasing Paper and Cardboard Recycling: Impacts on the Forest Sector and Carbon Emissions," Post-Print hal-04690101, HAL.
    14. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Xin Li & Huadong Guo & Guodong Cheng & Xiaoyu Song & Youhua Ran & Min Feng & Tao Che & Xinwu Li & Lei Wang & Anmin Duan & Donghui Shangguan & Deliang Chen & Rui Jin & Jie Deng & Jianbin Su & Bin Cao, 2025. "Polar regions are critical in achieving global sustainable development goals," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    17. Quan-Hoang Vuong & Quang-Loc Nguyen & Ruining Jin & Minh-Hieu Thi Nguyen & Thi-Phuong Nguyen & Viet-Phuong La & Minh-Hoang Nguyen, 2023. "Increasing Supply for Woody-Biomass-Based Energy through Wasted Resources: Insights from US Private Landowners," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    18. Giovanna Croxatto Vega & Joshua Sohn & Sander Bruun & Stig Irving Olsen & Morten Birkved, 2019. "Maximizing Environmental Impact Savings Potential through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    19. Abraham Nathan Zoure & Paolo Vincenzo Genovese, 2023. "Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    20. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46305-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.