IDEAS home Printed from https://ideas.repec.org/a/spr/joamsc/v49y2021i3d10.1007_s11747-020-00758-8.html
   My bibliography  Save this article

Sample-based longitudinal discrete choice experiments: preferences for electric vehicles over time

Author

Listed:
  • Katharina Keller

    (Goethe University Frankfurt)

  • Christian Schlereth

    (WHU – Otto Beisheim School of Management)

  • Oliver Hinz

    (Goethe University Frankfurt)

Abstract

Discrete choice experiments have emerged as the state-of-the-art method for measuring preferences, but they are mostly used in cross-sectional studies. In seeking to make them applicable for longitudinal studies, our study addresses two common challenges: working with different respondents and handling altering attributes. We propose a sample-based longitudinal discrete choice experiment in combination with a covariate-extended hierarchical Bayes logit estimator that allows one to test the statistical significance of changes. We showcase this method’s use in studies about preferences for electric vehicles over six years and empirically observe that preferences develop in an unpredictable, non-monotonous way. We also find that inspecting only the absolute differences in preferences between samples may result in misleading inferences. Moreover, surveying a new sample produced similar results as asking the same sample of respondents over time. Finally, we experimentally test how adding or removing an attribute affects preferences for the other attributes.

Suggested Citation

  • Katharina Keller & Christian Schlereth & Oliver Hinz, 2021. "Sample-based longitudinal discrete choice experiments: preferences for electric vehicles over time," Journal of the Academy of Marketing Science, Springer, vol. 49(3), pages 482-500, May.
  • Handle: RePEc:spr:joamsc:v:49:y:2021:i:3:d:10.1007_s11747-020-00758-8
    DOI: 10.1007/s11747-020-00758-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11747-020-00758-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11747-020-00758-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gensler, Sonja & Hinz, Oliver & Skiera, Bernd & Theysohn, Sven, 2012. "Willingness-to-pay estimation with choice-based conjoint analysis: Addressing extreme response behavior with individually adapted designs," European Journal of Operational Research, Elsevier, vol. 219(2), pages 368-378.
    2. Louviere, Jordan J. & Islam, Towhidul, 2008. "A comparison of importance weights and willingness-to-pay measures derived from choice-based conjoint, constant sum scales and best-worst scaling," Journal of Business Research, Elsevier, vol. 61(9), pages 903-911, September.
    3. Jeffrey Meyer & Venkatesh Shankar & Leonard L. Berry, 2018. "Pricing hybrid bundles by understanding the drivers of willingness to pay," Journal of the Academy of Marketing Science, Springer, vol. 46(3), pages 497-515, May.
    4. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    5. Qing Liu & Angela Dean & David Bakken & Greg Allenby, 2009. "Studying the level-effect in conjoint analysis: An application of efficient experimental designs for hyper-parameter estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(1), pages 69-93, March.
    6. Christian Schlereth & Bernd Skiera, 2012. "DISE: Dynamic Intelligent Survey Engine," Springer Books, in: Adamantios Diamantopoulos & Wolfgang Fritz & Lutz Hildebrandt (ed.), Quantitative Marketing and Marketing Management, edition 127, chapter 11, pages 225-243, Springer.
    7. Hinz, Oliver & Schlereth, Christian & Zhou, Wenyan, 2015. "Fostering the Adoption of Electric Vehicles by Providing Complementary Mobility Services: A Two-Step Approach using Best-Worst Scaling and Dual Response," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77138, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
    9. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    10. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D., 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, September.
    11. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    13. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    14. Anders Jensen & Elisabetta Cherchi & Juan Dios Ortúzar, 2014. "A long panel survey to elicit variation in preferences and attitudes in the choice of electric vehicles," Transportation, Springer, vol. 41(5), pages 973-993, September.
    15. Fernando Branco & Monic Sun & J. Miguel Villas-Boas, 2012. "Optimal Search for Product Information," Management Science, INFORMS, vol. 58(11), pages 2037-2056, November.
    16. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    17. Jeff Brazell & Christopher Diener & Ekaterina Karniouchina & William Moore & Válerie Séverin & Pierre-Francois Uldry, 2006. "The no-choice option and dual response choice designs," Marketing Letters, Springer, vol. 17(4), pages 255-268, December.
    18. Christian Schlereth & Bernd Skiera, 2017. "Two New Features in Discrete Choice Experiments to Improve Willingness-to-Pay Estimation That Result in SDR and SADR: Separated (Adaptive) Dual Response," Management Science, INFORMS, vol. 63(3), pages 829-842, March.
    19. Joffre Swait & Rick L. Andrews, 2003. "Enriching Scanner Panel Models with Choice Experiments," Marketing Science, INFORMS, vol. 22(4), pages 442-460, September.
    20. Meeran, Sheik & Jahanbin, Semco & Goodwin, Paul & Quariguasi Frota Neto, Joao, 2017. "When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable?," European Journal of Operational Research, Elsevier, vol. 258(2), pages 512-524.
    21. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    22. Gilbride, Timothy J. & Currim, Imran S. & Mintz, Ofer & Siddarth, S., 2016. "A Model for Inferring Market Preferences from Online Retail Product Information Matrices," Journal of Retailing, Elsevier, vol. 92(4), pages 470-485.
    23. Coupey, Eloise & Irwin, Julie R & Payne, John W, 1998. "Product Category Familiarity and Preference Construction," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 24(4), pages 459-468, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latino, Carmelo & Pelizzon, Loriana & Riedel, Max, 2023. "How to green the European Auto ABS market? A literature survey," SAFE Working Paper Series 391, Leibniz Institute for Financial Research SAFE.
    2. Jaiswal, Deepak & Deshmukh, Arun Kumar & Thaichon, Park, 2022. "Who will adopt electric vehicles? Segmenting and exemplifying potential buyer heterogeneity and forthcoming research," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    2. K. Valerie Carl & Cristina Mihale-Wilson & Jan Zibuschka & Oliver Hinz, 2024. "A consumer perspective on Corporate Digital Responsibility: an empirical evaluation of consumer preferences," Journal of Business Economics, Springer, vol. 94(7), pages 979-1024, October.
    3. Stefanie Heinzle, 2012. "Disclosure of Energy Operating Cost Information: A Silver Bullet for Overcoming the Energy-Efficiency Gap?," Journal of Consumer Policy, Springer, vol. 35(1), pages 43-64, March.
    4. Nicole Stein & Stefan Spinler & Helga Vanthournout & Vered Blass, 2020. "Consumer Perception of Online Attributes in Circular Economy Activities," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    5. Woo, JongRoul & Shin, Jungwoo & Kim, Hongbum & Moon, HyungBin, 2022. "Which consumers are willing to pay for smart car healthcare services? A discrete choice experiment approach," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    6. Kaye-Blake, William & Abell, Walter L. & Zellman, Eva, 2009. "Respondents’ ignoring of attribute information in a choice modelling survey," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(4), pages 1-18.
    7. Burmester, Alexa B. & Eggers, Felix & Clement, Michel & Prostka, Tim, 2016. "Accepting or fighting unlicensed usage: Can firms reduce unlicensed usage by optimizing their timing and pricing strategies?," International Journal of Research in Marketing, Elsevier, vol. 33(2), pages 343-356.
    8. Christian Schlereth & Bernd Skiera, 2017. "Two New Features in Discrete Choice Experiments to Improve Willingness-to-Pay Estimation That Result in SDR and SADR: Separated (Adaptive) Dual Response," Management Science, INFORMS, vol. 63(3), pages 829-842, March.
    9. Probst, Markus, 2021. "Ohne Moos nichts los? Eine Discrete-Choice-Analyse der Präferenzen von Medizinstudenten für die Arbeit auf dem Land [No Mon, No Fun? A Discrete Choice Analysis of the Preferences of Medical Student," Junior Management Science (JUMS), Junior Management Science e. V., vol. 6(3), pages 507-546.
    10. Peter Lenk, 2014. "Bayesian estimation of random utility models," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 20, pages 457-497, Edward Elgar Publishing.
    11. Schlereth, Christian & Skiera, Bernd, 2012. "Measurement of consumer preferences for bucket pricing plans with different service attributes," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 167-180.
    12. Murray Rudd, 2011. "An Exploratory Analysis of Societal Preferences for Research-Driven Quality of Life Improvements in Canada," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 101(1), pages 127-153, March.
    13. Katharina Saunders & Christian Hagist & Alistair McGuire & Christian Schlereth, 2020. "Preferences of a new health care profession. A pilot study with anaesthesia technologist trainees in Germany," WHU Working Paper Series - Economics Group 20-01, WHU - Otto Beisheim School of Management.
    14. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    15. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    16. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    17. Visaria, Anant Atul & Jensen, Anders Fjendbo & Thorhauge, Mikkel & Mabit, Stefan Eriksen, 2022. "User preferences for EV charging, pricing schemes, and charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 120-143.
    18. Carsten Herbes & Johannes Dahlin & Peter Kurz, 2020. "Consumer Willingness To Pay for Proenvironmental Attributes of Biogas Digestate-Based Potting Soil," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    19. Lim, Sesil & Huh, Sung-Yoon & Shin, Jungwoo & Lee, Jongsu & Lee, Yong-Gil, 2019. "Enhancing public acceptance of renewable heat obligation policies in South Korea: Consumer preferences and policy implications," Energy Economics, Elsevier, vol. 81(C), pages 1167-1177.
    20. Macea, Luis F. & Cantillo, Victor & Arellana, Julian, 2018. "Influence of attitudes and perceptions on deprivation cost functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 125-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:49:y:2021:i:3:d:10.1007_s11747-020-00758-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.