IDEAS home Printed from https://ideas.repec.org/a/spr/joamsc/v49y2021i1d10.1007_s11747-020-00720-8.html
   My bibliography  Save this article

Consumer dynamics: theories, methods, and emerging directions

Author

Listed:
  • Jonathan Z. Zhang

    (Colorado State University)

  • Chun-Wei Chang

    (Amazon.com)

Abstract

Consumer attitudes and behaviors are fundamentally dynamic processes; thus, understanding consumer dynamics is crucial for truly understanding consumer behaviors and for firms to formulate appropriate actions. Recent history in empirical marketing research has enjoyed increasingly richer consumer data as the result of technology and firms’ conscious data collection efforts. Richer data, in turn, have propelled the development and application of quantitative methods in modeling consumer dynamics, and have contributed to the understanding of complex dynamic behaviors across many domains. In this paper, we discuss the sources of consumer dynamics and how our understanding in this area has improved over the past four decades. Accordingly, we discuss several commonly used empirical methods for conducting dynamics research. Finally, as the data evolution continues into new forms and new environments, we identify cutting-edge trends and domains, and offer directions for advancing the understanding of consumer dynamics in these emerging areas.

Suggested Citation

  • Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
  • Handle: RePEc:spr:joamsc:v:49:y:2021:i:1:d:10.1007_s11747-020-00720-8
    DOI: 10.1007/s11747-020-00720-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11747-020-00720-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11747-020-00720-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuba Srinivasan & Oliver J. Rutz & Koen Pauwels, 2016. "Paths to and off purchase: quantifying the impact of traditional marketing and online consumer activity," Journal of the Academy of Marketing Science, Springer, vol. 44(4), pages 440-453, July.
    2. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    3. Rust, Roland T. & Kumar, V. & Venkatesan, Rajkumar, 2011. "Will the frog change into a prince? Predicting future customer profitability," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 281-294.
    4. Jonathan Z. Zhang, 2019. "Dynamic customer interdependence," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 723-746, July.
    5. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    6. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    7. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    8. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    9. Bandyopadhyay, Subir, 2009. "A Dynamic Model of Cross-Category Competition: Theory, Tests and Applications," Journal of Retailing, Elsevier, vol. 85(4), pages 468-479.
    10. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    11. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    12. Gurumurthy Kalyanaram & Russell S. Winer, 1995. "Empirical Generalizations from Reference Price Research," Marketing Science, INFORMS, vol. 14(3_supplem), pages 161-169.
    13. Wirtz, Jochen & Xiao, Ping & Chiang, Jeongwen & Malhotra, Naresh, 2014. "Contrasting the Drivers of Switching Intent and Switching Behavior in Contractual Service Settings," Journal of Retailing, Elsevier, vol. 90(4), pages 463-480.
    14. Romana Khan & Michael Lewis & Vishal Singh, 2009. "Dynamic Customer Management and the Value of One-to-One Marketing," Marketing Science, INFORMS, vol. 28(6), pages 1063-1079, 11-12.
    15. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    16. Bruce G. S. Hardie & Eric J. Johnson & Peter S. Fader, 1993. "Modeling Loss Aversion and Reference Dependence Effects on Brand Choice," Marketing Science, INFORMS, vol. 12(4), pages 378-394.
    17. Purushottam Papatla & Lakshman Krishnamurthi, 1992. "A Probit Model of Choice Dynamics," Marketing Science, INFORMS, vol. 11(2), pages 189-206.
    18. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    19. Jonathan Z. Zhang & Oded Netzer & Asim Ansari, 2014. "Dynamic Targeted Pricing in B2B Relationships," Marketing Science, INFORMS, vol. 33(3), pages 317-337, May.
    20. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
    21. Vincent R. Nijs & Marnik G. Dekimpe & Jan-Benedict E.M. Steenkamps & Dominique M. Hanssens, 2001. "The Category-Demand Effects of Price Promotions," Marketing Science, INFORMS, vol. 20(1), pages 1-22, September.
    22. Pauwels, Koen & Neslin, Scott A., 2015. "Building With Bricks and Mortar: The Revenue Impact of Opening Physical Stores in a Multichannel Environment," Journal of Retailing, Elsevier, vol. 91(2), pages 182-197.
    23. Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.
    24. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    25. Pradeep Chintagunta & Tülin Erdem & Peter E. Rossi & Michel Wedel, 2006. "Structural Modeling in Marketing: Review and Assessment," Marketing Science, INFORMS, vol. 25(6), pages 604-616, 11-12.
    26. Koen Pauwels & Imran Currim & Marnik Dekimpe & Dominique Hanssens & Natalie Mizik & Eric Ghysels & Prasad Naik, 2004. "Modeling Marketing Dynamics by Time Series Econometrics," Marketing Letters, Springer, vol. 15(4), pages 167-183, December.
    27. James H. Pedrick & Fred S. Zufryden, 1991. "Evaluating the Impact of Advertising Media Plans: A Model of Consumer Purchase Dynamics Using Single-Source Data," Marketing Science, INFORMS, vol. 10(2), pages 111-130.
    28. Mark, Tanya & Lemon, Katherine N. & Vandenbosch, Mark & Bulla, Jan & Maruotti, Antonello, 2013. "Capturing the Evolution of Customer–Firm Relationships: How Customers Become More (or Less) Valuable Over Time," Journal of Retailing, Elsevier, vol. 89(3), pages 231-245.
    29. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    30. Karthik Sridhar & Ram Bezawada & Minakshi Trivedi, 2012. "Investigating the Drivers of Consumer Cross-Category Learning for New Products Using Multiple Data Sets," Marketing Science, INFORMS, vol. 31(4), pages 668-688, July.
    31. Koen Pauwels, 2004. "How Dynamic Consumer Response, Competitor Response, Company Support, and Company Inertia Shape Long-Term Marketing Effectiveness," Marketing Science, INFORMS, vol. 23(4), pages 596-610, June.
    32. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2018. "The effects of mobile promotions on customer purchase dynamics," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 453-470.
    33. Rishin Roy & Pradeep K. Chintagunta & Sudeep Haldar, 1996. "A Framework for Investigating Habits, “The Hand of the Past,” and Heterogeneity in Dynamic Brand Choice," Marketing Science, INFORMS, vol. 15(3), pages 280-299.
    34. Marnik G. Dekimpe & Dominique M. Hanssens, 1995. "The Persistence of Marketing Effects on Sales," Marketing Science, INFORMS, vol. 14(1), pages 1-21.
    35. Wang, Rebecca Jen-Hui & Malthouse, Edward C. & Krishnamurthi, Lakshman, 2015. "On the Go: How Mobile Shopping Affects Customer Purchase Behavior," Journal of Retailing, Elsevier, vol. 91(2), pages 217-234.
    36. Reimer, Kerstin & Rutz, Oliver J. & Pauwels, Koen, 2014. "How Online Consumer Segments Differ in Long-term Marketing Effectiveness," Journal of Interactive Marketing, Elsevier, vol. 28(4), pages 271-284.
    37. Ho, Hillbun (Dixon) & Ganesan, Shankar & Oppewal, Harmen, 2011. "The Impact of Store-Price Signals on Consumer Search and Store Evaluation," Journal of Retailing, Elsevier, vol. 87(2), pages 127-141.
    38. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    39. Chang Hee Park & Young-Hoon Park, 2016. "Investigating Purchase Conversion by Uncovering Online Visit Patterns," Marketing Science, INFORMS, vol. 35(6), pages 894-914, November.
    40. S. Sriram & Pradeep K. Chintagunta & Ramya Neelamegham, 2006. "Effects of Brand Preference, Product Attributes, and Marketing Mix Variables in Technology Product Markets," Marketing Science, INFORMS, vol. 25(5), pages 440-456, September.
    41. Sungho Park & Sachin Gupta, 2011. "A Regime-Switching Model of Cyclical Category Buying," Marketing Science, INFORMS, vol. 30(3), pages 469-480, 05-06.
    42. Leeflang, Peter S.H. & Bijmolt, Tammo H.A. & van Doorn, Jenny & Hanssens, Dominique M. & van Heerde, Harald J. & Verhoef, Peter C. & Wieringa, Jaap E., 2009. "Creating lift versus building the base: Current trends in marketing dynamics," International Journal of Research in Marketing, Elsevier, vol. 26(1), pages 13-20.
    43. David A. Schweidel & Eric T. Bradlow & Peter S. Fader, 2011. "Portfolio Dynamics for Customers of a Multiservice Provider," Management Science, INFORMS, vol. 57(3), pages 471-486, March.
    44. Savannah Wei Shi & Michel Wedel & F. G. M. (Rik) Pieters, 2013. "Information Acquisition During Online Decision Making: A Model-Based Exploration Using Eye-Tracking Data," Management Science, INFORMS, vol. 59(5), pages 1009-1026, May.
    45. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    46. Chang, Chun-Wei & Zhang, Jonathan Z., 2016. "The Effects of Channel Experiences and Direct Marketing on Customer Retention in Multichannel Settings," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 77-90.
    47. Verhoef, Peter C. & Lemon, Katherine N. & Parasuraman, A. & Roggeveen, Anne & Tsiros, Michael & Schlesinger, Leonard A., 2009. "Customer Experience Creation: Determinants, Dynamics and Management Strategies," Journal of Retailing, Elsevier, vol. 85(1), pages 31-41.
    48. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    49. Carl F. Mela & Jason Roos & Yiting Deng, 2013. "Invited Paper --A Keyword History of Marketing Science," Marketing Science, INFORMS, vol. 32(1), pages 8-18, September.
    50. Savannah Wei Shi & Jie Zhang, 2014. "Usage Experience with Decision Aids and Evolution of Online Purchase Behavior," Marketing Science, INFORMS, vol. 33(6), pages 871-882, November.
    51. M. Tolga Akçura & Füsun F. Gönül & Elina Petrova, 2004. "Consumer Learning and Brand Valuation: An Application on Over-the-Counter Drugs," Marketing Science, INFORMS, vol. 23(1), pages 156-169, April.
    52. Marnik G. Dekimpe & Dominique M. Hanssens, 1995. "Empirical Generalizations About Market Evolution and Stationarity," Marketing Science, INFORMS, vol. 14(3_supplem), pages 109-121.
    53. Marc Vanhuele & Shuba Srinivasan & Koen Pauwels, 2010. "Mindset Metrics in Market Response Models: An Integrative Approach," Post-Print hal-00528411, HAL.
    54. David Godes & José C. Silva, 2012. "Sequential and Temporal Dynamics of Online Opinion," Marketing Science, INFORMS, vol. 31(3), pages 448-473, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Maria Dangelico & Valerio Schiaroli & Luca Fraccascia, 2022. "Is Covid‐19 changing sustainable consumer behavior? A survey of Italian consumers," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1477-1496, December.
    2. Qu, Yingge & Kumar, V. & Zhao, Yi, 2023. "A dynamic model of the contract length and early termination: The roles of technology evolution and pricing strategy," Journal of Business Research, Elsevier, vol. 167(C).
    3. Chen, Xin & Guo, Shuojia & Xiong, Jie & Ye, Zhuxin, 2023. "Customer engagement, dependence and loyalty: An empirical study of Chinese customers in multitouch service encounters," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    4. Blasco-Arcas, Lorena & Lee, Hsin-Hsuan Meg & Kastanakis, Minas N. & Alcañiz, Mariano & Reyes-Menendez, Ana, 2022. "The role of consumer data in marketing: A research agenda," Journal of Business Research, Elsevier, vol. 146(C), pages 436-452.
    5. Linian Wang & Anlan Yu & Jianghong Liu & Huibing Zhang & Leye Wang, 2024. "YUI: Day-ahead Electricity Price Forecasting Using Invariance Simplified Supply and Demand Curve," Papers 2405.14893, arXiv.org.
    6. Guo, Wenhao & Tian, Jin & Li, Minqiang, 2023. "Price-aware enhanced dynamic recommendation based on deep learning," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    7. Stephen L. Vargo & Linda Peters & Hans Kjellberg & Kaisa Koskela-Huotari & Suvi Nenonen & Francesco Polese & Debora Sarno & Claudia Vaughan, 2023. "Emergence in marketing: an institutional and ecosystem framework," Journal of the Academy of Marketing Science, Springer, vol. 51(1), pages 2-22, January.
    8. Shunlin Wang & Yifang Chen, 2022. "Consumption Coupons, Consumption Probability and Inventory Optimization: An Improved Minimum-Cost Maximum-Flow Approach," Sustainability, MDPI, vol. 14(13), pages 1-14, June.
    9. Jonathan Luffarelli & Sebastiano A. Delre & Polina Landgraf, 2023. "How has the effect of brand personality on customer-based brand equity changed over time? Longitudinal evidence from a panel data set spanning 18 years," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 598-616, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
    2. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    3. Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.
    4. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    5. Clarence Lee & Elie Ofek & Thomas J. Steenburgh, 2018. "Personal and Social Usage: The Origins of Active Customers and Ways to Keep Them Engaged," Management Science, INFORMS, vol. 64(6), pages 2473-2495, June.
    6. Park, Chang Hee & Yoon, Tae Jung, 2022. "The dark side of up-selling promotions: Evidence from an analysis of cross-brand purchase behavior☆," Journal of Retailing, Elsevier, vol. 98(4), pages 647-666.
    7. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    8. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    9. Chang, Chun-Wei & Zhang, Jonathan Z., 2016. "The Effects of Channel Experiences and Direct Marketing on Customer Retention in Multichannel Settings," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 77-90.
    10. Peter Ebbes & Oded Netzer, 2022. "Using Social Network Activity Data to Identify and Target Job Seekers," Management Science, INFORMS, vol. 68(4), pages 3026-3046, April.
    11. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.
    12. Jonathan Z. Zhang & Oded Netzer & Asim Ansari, 2014. "Dynamic Targeted Pricing in B2B Relationships," Marketing Science, INFORMS, vol. 33(3), pages 317-337, May.
    13. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    14. Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
    15. Amirali Kani & Wayne S. DeSarbo & Duncan K. H. Fong, 2018. "A Factorial Hidden Markov Model for the Analysis of Temporal Change in Choice Models," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(3), pages 162-177, December.
    16. Rajkumar Venkatesan & Alexander Bleier & Werner Reinartz & Nalini Ravishanker, 2019. "Improving customer profit predictions with customer mindset metrics through multiple overimputation," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 771-794, September.
    17. Mark, Tanya & Lemon, Katherine N. & Vandenbosch, Mark & Bulla, Jan & Maruotti, Antonello, 2013. "Capturing the Evolution of Customer–Firm Relationships: How Customers Become More (or Less) Valuable Over Time," Journal of Retailing, Elsevier, vol. 89(3), pages 231-245.
    18. Arun Gopalakrishnan & Eric T. Bradlow & Peter S. Fader, 2017. "A Cross-Cohort Changepoint Model for Customer-Base Analysis," Marketing Science, INFORMS, vol. 36(2), pages 195-213, March.
    19. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    20. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:49:y:2021:i:1:d:10.1007_s11747-020-00720-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.